
The Twilight of SGX, but Not its Tests: An
In-Depth Study of Testing in SGX Projects

1st Jiapei Deng
College of Computer Science

Beijing University of Technology
Beijing, China

piepie@emails.bjut.edu.cn

2nd Yin Liu*
College of Computer Science

Beijing University of Technology
Beijing, China

yinliu@bjut.edu.cn

Abstract—The Software Guard Extensions (SGX) is a Trusted
Execution Environment (TEE) solution that has transitioned
from Intel’s processor lineup for desktops and laptops to being
exclusive to cloud servers. We believe one reason for this forced
shift is that SGX-based applications lack comprehensive testing
and may be vulnerable to security attacks. Although there have
been numerous studies on SGX, research focused specifically on
SGX’s testing remains limited.

In this paper, we take a first step in studying SGX-related test
code, test scenarios, test oracles, and users’ SGX cloud practices.
Specifically, our study seeks to answer three research questions:
what is the current status of the SGX test code? what are the
test scenarios and oracles for SGX? how do users utilize or test
SGX in the cloud? To that end, our study (1) analyzes the status
quo on over 9,000 valid lines of SGX-related test code extracted
from real-world projects, (2) develops 43 test scenarios identified
from Intel’s official documentation, along with a formalization
that clearly expresses each scenario and its connected oracle, and
(3) investigates into users’ SGX practices in the cloud, based on
16 valid user feedback gathered from leading cloud vendors’
websites and the StackExchange network.

From this work, we established three corresponding datasets:
a test code set, a test scenario set, and a user feedback set. As a
result, we identified three critical pieces of guidance, four testing
principles, and five key findings related to SGX testing. These
insights can guide and inspire software testers in creating valid
test cases for SGX-based projects, while also offering suggestions
for Intel, other TEE vendors, and cloud providers on how to
improve their testing solutions.

Index Terms—Cloud Computing Security, Software Guard
Extensions (SGX), Software Testing, Empirical Study.

I. INTRODUCTION

“The moral is obvious. You can’t trust code that you
did not totally create yourself.”
– Ken Thompson, Reflections on Trusting Trust, 1984

The Trusted Execution Environment (TEE) is an infras-
tructure designed to safeguard code and data against security
attacks, both in cloud servers and client devices. Around
2015, Intel provided its own TEE solution, Software Guard
Extensions (SGX) [19], then integrated the technique into its
processor lineup [18]. During that period, SGX, as an emerg-
ing star, helped secure a vast number of desktops, laptops, and
cloud servers. However, seven years later, Intel announced that
SGX would focus on cloud server processors only, rather than

* Corresponding author.

those for desktops and laptops [32]. It is widely recognized
that emergence, evolution, and obsolescence are common life
cycles for technology, and the reasons behind these changes
are often complex. We believe that a significant reason for
the decline of SGX lies in its testing practices, especially the
testing in SGX-based projects1.

In fact, the SGX itself remains vulnerable to a series of
attacks, including both system and software-targeted ones [9],
[29], [36]. The former primarily focuses on address translation,
cache, and DRAM [35], the latter typically exploits the SGX
software interface (e.g., ECall/OCall) to compromise SGX-
based projects, such as leaking secrets [37]. While application
developers—those who use SGX to secure their projects—may
not be able to prevent the system-targeted attacks, they can
identify unsafe and improper usage of SGX that leads to the
software-targeted attacks by conducting appropriate tests.

However, existing research on SGX testing is insufficient.
Most of them only concentrate on measuring the execution
performance of SGX projects [13], [38] or on fuzzing or
monitoring the SGX’s isolated execution environment (i.e.,
enclaves) [6], [21], [34]. These studies often overlook crucial
aspects, such as test scenarios, test oracles, and relevant test
code for SGX-based projects. Worse, as SGX has been shifted
towards cloud environments, there is a notable lack of research
addressing users’ SGX practices in the cloud.

In this paper, we conduct an in-depth study of testing in
SGX projects, aiming to draw a comprehensive picture of
SGX-related test code, test scenarios, test oracles, and the
users’ SGX cloud practices. To that end, our study seeks to
address the following research questions:

• RQ-1: What is the current status of the SGX test code?
• RQ-2: What are the test scenarios and oracles for SGX?
• RQ-3: How do users utilize or test SGX in the cloud?
To address RQ-1, we begin by using a triple-filtering

approach to obtain a selection of valid SGX projects from
GitHub, followed by a keyword-set based method and a
human-AI pair analysis process to identify valid test code
and extract its characteristics. To address RQ-2, we manually
review Intel’s SGX Developer Guide to extract a set of test

1In this paper, we call projects using SGX components “SGX-based
projects,” using “SGX project” and “SGX-based project” interchangeably.



scenarios. We then analyze and formalize each scenario along
with its corresponding oracle. To address RQ-3, we collect
and filter valid user feedback automatically from renowned
cloud vendors’ websites and the StackExchange network, and
then manually analyze it to gain insights into SGX usage and
testing strategies within these cloud environments.

To the best of our knowledge, this is the first study to
thoroughly investigate testing in SGX projects and users’ SGX
cloud practices. This paper makes the following contributions:

1) A comprehensive examination of the current state of
SGX-related test code in real-world projects, along with
methods to identify valid test code.

2) An in-depth analysis of test scenarios and oracles for
SGX, together with a formalization for each scenario
and its corresponding oracle.

3) A thorough exploration of users’ SGX cloud practices.
4) Three distinct datasets: a test code dataset, a test

scenario dataset, and a cloud user feedback dataset.
5) Three essential pieces of guidance for practitioners,

four testing principles, five key findings, and a series
of insights and discussions related to SGX testing.

We have made all of the datasets mentioned above available
at: https://github.com/ppppppie/SGX-Test-Analysis

II. BACKGROUND

1) TEE and SGX: A Trusted Execution Environment
(TEE) [12] is a security technology designed to protect code
and data from illegitimate access, damage, and tampering. The
fundamental principle of TEE is “isolation,” which involves
placing the sensitive code and data in a secure execution
environment that is difficult for attackers to breach. One
prominent TEE solution is Intel’s SGX. The SGX creates
isolated environments called enclaves to provide the security
features associated with TEE for a wide range of devices,
including desktops, laptops, and cloud servers that use Intel
processors. Recently, Intel has shifted its strategy, and SGX is
now supported on cloud servers only.

2) SGX-based Projects and Their Inner Communication:
In general, an SGX-based project consists of two components:
the trusted part (i.e., the enclave) and the untrusted part (also
known as the outside application). These two components
communicate mainly through two types of function calls:
ECall and OCall. ECall, stands for “Enclave Call,” which
refers to accessing an interface function inside the enclave.
OCall, or “Out Call,” refers to accessing external applications
from inside the enclave [20]. Developers can define ECall and
OCall functions using a special SGX file known as an Enclave
Definition Language (EDL) file. Based on the EDL file, the
SGX SDK helps generate the necessary code for facilitating
communication in and out of the enclaves.

For example, if a financial application requires SGX to
secure its payment functionality, the payment function and any
related data need to be classified as trusted. These components
should be placed within an enclave. To accomplish this, a
developer can designate the payment function as an ECall
function in the EDL file, implement it within the secure

enclave, and call it from untrusted code (i.e., the outside
application). Because the function and its associated data
operate inside the enclave, SGX can ensure their security.
Furthermore, the payment function within the enclave can call
external functions and transmit data through OCalls.

3) SGX and Cloud: Data security and privacy concerns
have long plagued cloud-based services. Before introducing
SGX to their servers, leading cloud providers repeatedly
assure users that their cloud services have been equipped with
advanced security techniques. However, once the data was sent
to the cloud server, users began to worry about the potential for
their data to be leaked or abused. Indeed, cloud servers may
have severe vulnerabilities that cyber attackers can exploit [1]–
[4]. Moreover, sensitive user data may be accessed or exposed
by careless employees, insiders, or government entities [31],
[33]. Thanks to the SGX, cloud servers can have a secure
space that both cloud providers and their customers trust.
Although Intel has announced that its latest chips for desktops
and laptops no longer support SGX, it is still available in
the company’s chip lineup for cloud servers. In fact, major
cloud providers, such as Microsoft Azure, Alibaba Cloud, IBM
Cloud, OVH Cloud, and more, have been leveraging SGX to
offer enhanced security services to their customers [32].

III. METHODOLOGY

In this section, we outline our research goals and scope,
followed by an overview of our solution.

A. Goal and Scope

The goal of this paper is to demystify testing in SGX
projects by focusing on three subjects: (a) SGX-related test
code, unveiling its current status (discussed in § IV), (b)
SGX’s test scenarios and oracles, including the rules and
formalization (discussed in § V), and (c) users’ SGX practices
in the cloud, based on user feedback from dominant cloud
platforms (discussed in § VI).

For (a), we investigate real-world SGX projects and their
test code available on GitHub. We opt for open-source projects
instead of commercial ones due to accessibility concerns, as
the latter can only be accessed by their employees. Addition-
ally, the open-sourced projects and datasets can be shared more
easily with the public without encountering legal issues. Notice
that, we exclude demos, sample code, tutorials, and research
prototypes from our study because their test code is often
immature or focuses solely on their basic functionality rather
than SGX-related features. Furthermore, SGX SDKs, along
with supporting libraries, testing tools, security detectors, and
attack approaches targeted at SGX, are excluded as they focus
on supporting or targeting SGX instead of utilizing it.

For (b), we create the scenarios based on Intel’s SGX Devel-
oper Guide [20]. Although many relevant technical blogs and
articles exist online, Intel’s document is more comprehensive,
valid, and trustworthy. For (c), we examine user feedback
from notable cloud platforms, including Microsoft Azure,
Alibaba Cloud, IBM Cloud, and OVH Cloud. We select these
providers because they are recognized industry leaders and



have been mentioned in Intel’s announcements as confirmed
users of SGX for their cloud services [32]. We also collect
user feedback from the StackExchange network, as it is one
of the largest technical communities worldwide.

Intel’s docs Scenarios
& Oracles

Test Scenarios & Oracles

Manual Analysis

SGX-related test code

Users’ SGX practices in the Cloud

Cloud
Platforms

User Feedback Users’ SGX
Practices

Manual AnalysisCrawl & Identify

IdentifyCrawl & Identify Analyze

SGX-based Projects 
SGX-related Test code Status Quo 

Fig. 1. The Workflow of Our Study.

B. Solution Overview

Figure 1 presents the workflow of our solution, which
includes three parts: (a) our study on SGX-related test code
(the bottom of the Figure 1) begins by collecting and filtering
a number of valid SGX-based projects from GitHub. We
then extract the SGX-related test code from each project,
establishing a set of test code. Finally, we analyze this set
to reveal the characteristics of the test code; (b) our study
on SGX’s test scenarios and oracles (the left side at the
top of Figure 1) involves a manual analysis of Intel’s SGX
Developer Guide. This analysis extracts a comprehensive set of
test scenarios and oracles specifically for SGX-based projects;
(c) our study on users’ SGX practices in the clouds (the right
side of the top of Figure 1) starts by scraping and identifying
a swath of user feedback and suggestions related to SGX
from leading cloud platforms and the StackExchange network.
Next, we manually review this information to extract important
insights related to SGX usage and testing in cloud services.

IV. TEST CODE IN THE WILD

This section outlines the challenges and our approach to
studying SGX-related test code, followed by our findings.

A. Challenges

Empirically studying test code is a complex task. Identifying
valid test code alone is particularly challenging, and our
research compounds this difficulty by thoroughly examining
SGX-related testing. This effort to provide a complete picture
of SGX test code presented us with three main challenges.

Challenge-1: How can we obtain valid SGX-based projects?
To analyze SGX-related test code, the first step is to acquire the
source code for SGX-based projects, as test code is typically
tied to its corresponding source code. However, closed-source
projects that use SGX are not accessible to us. On the other
hand, although we can access open-source projects on GitHub,
identifying valid SGX-based projects among the over 420
million repositories on the world’s largest developer platform
can be challenging.

Challenge-2: How can we identify valid test code? Given
an SGX-based project, identifying test code, particularly the
portions related to SGX, can be rather tough. A straightforward

way is to check if files or function names contain the keyword
“test” (e.g., “testSGXCloudService”). In fact, this approach
has been applied in several papers published on premier
research conferences [10], [22]. Despite its effectiveness, the
method has its limitations, particularly in false negatives. That
is, test code may not always contain the word “test.” In other
words, developers can use alternative naming conventions such
as “assertion,” “verify,” “validate,” or “benchmark,” among
others. Additionally, the test code related to SGX contains
specific keywords that go beyond the standard ones.

Challenge-3: How can we cope with a code snippet or
project that involves unfamiliar domains? When reviewing
a code snippet and its associated project, we may encounter
areas that are unfamiliar to us. It is difficult to determine if
the code is meant to perform a test, and whether it specifi-
cally assesses any SGX-related functionality. Similarly, as we
analyze the dataset of identified SGX-related test code, we
may again come across unfamiliar code and projects while
extracting characteristics and understanding the current status.

B. Methodology

1) A Triple-Filtering Approach for Obtaining Valid SGX
Projects: To overcome Challenge-1, we take a three-step
filtering process: our first step starts with filtering projects
from GitHub. Using the GitHub API [11], we developed a
crawler and utilized a commonly used keyword, “sgx,” to filter
a wide range of projects potentially related to SGX. In the
second step, we filter out invalid projects by checking for the
presence of specific files: the EDL files and the “sgx urts.h”
header file2. Additionally, we apply a date filter, considering
only the projects created after 01/01/2016 as valid, since Intel
rolled out SGX around that time.

In the third step, we filter projects based on their categories.
Although we have a more reliable dataset of SGX-based
projects after the previous steps, we found that many projects
in this group are sample code, demos, research prototypes,
or others that do not qualify as containing valid test code.
Hence, we manually analyzed and categorized all the projects,
excluding those that fall into categories such as sample code,
demos, and research prototypes, and so on. As a result, we
identified a number of valid SGX-based projects for further
examination of the SGX-related test code.

2) Two Expanded Keyword Sets for Identifying Valid Test
Code: To overcome Challenge-2, we create two keyword
sets to identify valid test code. The first one is an expanded
keyword set of testing, which encompasses 23 test code-
related terms across seven different categories, including basic
words, assertions, test frameworks, test doubles, verification,
performance, and debug & coverage. Unlike prior studies,
which only used the keyword “test”, we use the whole set
as a filter. By filtering for files that include words from the
keyword set, we obtain a collection of source code files most

2Based on Intel’s official documents, any project using SGX must include
the EDL file, a file that is used for defining ECalls/OCalls, as well as the
“sgx urts.h” file, a part of the SGX SDK that facilitates necessary interactions
between inside and outside enclaves [17].



likely to contain test code. The second keyword set consists of
over 40 terms related to SGX and its enclaves. We use this set
as a reference. In the subsequent analysis, we examine each
test code file closely, paying particular attention to those that
contain any of the terms from this keyword set (details are
available in our open-sourced datasets).

3) A Human-AI Pair Analysis Process: To overcome
Challenge-3, we perform a human-AI pair analysis, where
AI interprets code and humans verify it. That is, given a
code snippet that falls outside our knowledge, we leverage
large language models (LLMs) to interpret or, if necessary,
summarize the related project. We then manually check if
the code snippet is a valid test code and relevant to SGX.
In particular, we use simple prompts for AI queries, like
“Explain the execution logic of this code.” In this process,
we did not limit ourselves to a specific model; the models we
used included DeepSeek-R1, ChatGPT-4, and KIMI K1.5/K2.
Please note that we use LLMs only when necessary and as an
assistant, not for decision-making. In other words, regardless
of the AI’s interpretation, we will do our part to verify the
following criteria: (a) the inclusion of testing elements in the
source code, such as test discovery, performance measurement,
and feature verification. If these elements are present, we will
consider it a valid test code. (b) that the test code calls SGX
interfaces or that its logic is relevant to SGX modules. If all
the above criteria are met, we will consider the code a valid
SGX-related test code.

C. Dataset

Following the approaches above, our dataset comprises 217
SGX projects, which include 54 valid projects and 163 invalid
ones. As stated earlier, the invalid projects consist of SGX
SDKs and supporting libraries, demos, sample code, tutorials,
testing tools, security detectors for SGX, SGX-targeted at-
tacks, and research prototypes. Additionally, we have excluded
projects that lack README files and those that were archived
during this study. Out of the 54 valid projects, 31 include
testing code, while 9 of these further involve testing SGX-
related components. In total, we have gathered 9,139 lines of
testing code related to SGX.

D. Results and Findings

Finding 1: Few projects test their SGX-related components.
As previously mentioned, we have excluded a series of projects
that are generally recognized as unlikely to provide valid test
code. Nevertheless, among the 54 filtered valid projects, only 9
(16.7%) contain SGX-related testing code. While we obtained
more than 9,000 lines of valid testing code, these lines only
represent 4.6% of the total testing code from the 9 projects.

Further, we calculated the ratio of SGX-related testing code
to the total testing code within these projects. Six of the
projects have SGX-related testing code that constitutes more
than half of their total testing code. However, all six of these
projects are relatively small, each with fewer than 10,000 lines
of testing code. In contrast, the two larger projects, each with
over 10,000 lines of testing code, have SGX-related testing

code accounting for only 0.1% (220 out of 178,921) and 32.6%
(3,412 out of 10,461) of their total testing code, respectively.

Finding 2: Projects often test their SGX-related components
in a manner that is too simplistic and focused too narrowly. As
shown on the left side of Figure 2, only 4 out of the 9 projects
include unit tests to verify their SGX-related components.
In contrast, more projects use smoke testing, which wraps
up a series of testing functions as a whole to ensure that
basic functionalities are working correctly. Furthermore, in our
analysis of the test focus, we discovered that all the test code
solely targets the project’s functionality, without including any
security or performance test cases (as shown on the right side
of Figure 2). This indicates that these projects focus only
on whether their SGX components work well rather than on
security or performance concerns.

Fig. 2. Testing Strategies in SGX-related Testing Code.

Finding 3: Projects test their ECall and OCall, frequently
focusing on cryptography and the enclave’s lifecycle. In our
analysis of the test subjects, we found that projects typically
test either their ECalls, OCalls, or both. As illustrated on the
left side of Figure 3, 8 out of the 9 projects evaluate ECalls,
while 6 assess OCalls, with 5 of them testing both types.

Regarding functionalities, the right side of Figure 3 indicates
that the most frequently tested features include cryptography
components (e.g., key generation, encryption/decryption), and
the enclave’s lifecycle (e.g., an enclave’s creation/destruction).
Other commonly tested functionalities include printing and de-
bugging information, sealing/unsealing, attestation, multiple-
precision arithmetic, file operations, and socket functions.

Fig. 3. Subjects and Functionalities targeted by SGX-related Testing Code.

E. Guidance for SGX practitioners

Given the findings above, we recommend that SGX practi-
tioners take a step back to reconsider their testing processes.

a) Adding more testing code in SGX projects: Findings
1 and 2 illustrate the noticeable lack of testing for SGX
components and the need for various testing strategies. With
only simple smoke tests, or even no testing code at all, SGX
issues—especially vulnerabilities in code within enclaves—are
difficult to detect. This often leads to problems affecting the
entire SGX system.



TABLE I
TEST SCENARIOS OF SGX (PARTIAL).

Test Domain Test Goal Test Subjects Prerequisites Condition Importance

Security To safeguard all secrets
assigned to production enclaves Enclave’s debug flag Code outside the enclave

passes secret data into the enclave Be configured as false Must

Performance To improve data clearing performance Variables do not contain secrets Some variables do not hold
secrets that need clearing

Be cleared by
the memset function

Recommen-
dation

Execution
Bugs

To ensure that the RDRAND instruction
has been successfully performed Code used the RDRAND instruction. The RDRAND instruction

has failed
Be attempted again
up to 10 times

Recommen-
dation

b) Focusing not only on functionality but also on security
and performance: Finding 2 shows that the analyzed projects
focus solely on testing functionalities. Numerous prior studies
indicate that SGX may be compromised by crafted attacks
or incur performance costs for the entire system. Therefore,
necessary test cases on security and performance need to be
developed and executed. Especially, improper usage of SGX
should be tested, as we found that it may cause security and
performance issues (as discussed in § V).

c) Paying more attention to SGX’s cryptographic support
and its lifecycle operations: Finding 3 indicates that the
most frequently used or tested functionalities of SGX are its
cryptographic support and lifecycle operations. Developers of
SGX need to prioritize maintaining these functionalities. Fur-
thermore, project developers should follow the correct usage of
these functions (as discussed in § V) and stay informed about
patches regarding these features, ensuring timely updates to
the new versions of SGX.

V. SGX TEST SCENARIOS AND ORACLES

This section presents our method for creating and formal-
izing test scenarios and discusses our findings.

A. Methodology & Dataset

We review Intel’s SGX Developer Guide [20] sentence
by sentence, labeling key descriptions, requirements, and
recommendations related to SGX testing. We then extract
essential elements for defining test scenarios, such as goals,
significance, test subjects, prerequisites, and pass conditions.
Our approach identified a total of 43 test scenarios. To the
best of our knowledge, it is the first dataset for SGX test
scenarios. Due to space constraints, Table I shows 3 test
scenarios, omitting the “Reason” column that explains their
necessity (details are available in our open-sourced datasets).

B. Results of Test Scenarios

As shown in Table I, we categorized the 43 test scenarios
into three domains: security, execution bugs, and performance
(i.e., the “Test Domain” column). Overall, the scenarios that
fell into the security category are the most (32 of 43), followed
by the performance (8 of 43) and execution bugs (6 of 43).
Additionally, three scenarios are classified under more than
one domain. The “Test Goal” column explains the object of
this test scenario. We typically represent the test goal as “(in
order) to something,” e.g., To safeguard all secrets assigned
to production enclaves.

The “Test Subjects” column outlines the specific elements
that each test scenario evaluates. Among our identified sce-
narios, 62.8% focus on code-related elements, which include

ECalls, OCalls, specific functions, and other code-related
features or processes. Additionally, 18.6% of scenarios con-
centrate on data, covering parameters, variables, keys, state
information, memory regions, and more. Furthermore, 11.6%
of scenarios address configurations, which involve debug flags,
enclave attributes, compiler options, and other settings. Lastly,
two scenarios pertain to other areas, including development
platforms, enclave’s size and quantity.

The “Prerequisites” column exhibits the situations or as-
sumptions necessary to perform a test scenario, e.g., Code
outside the enclave passes secret data into the enclave. The
“Behavior” column dictates the expected behaviors for the test
subjects, e.g., Be configured as false.

The “Importance” column indicates the significance of the
test scenarios, including levels such as Must, Should, May,
and Recommendation. Each importance level is derived from
Intel’s SGX Developer Guide, which uses these terms to
describe the content related to our identified test scenarios.
Out of 43 scenarios, there are 17 Must, 14 Should, 1 May,
10 Recommendations, and 1 NA. We assigned one scenario
an importance level of NA, as we could not find any relevant
expression of importance level for this scenario in the guide.

C. Formalizing Test Scenarios and Oracles

Based on the attributes of test scenarios (i.e., column labels
in Table I), we formalize the scenarios and their oracles.

a) For Test Scenarios: Let S denote the set of test sub-
jects, s an individual subject. Let P , B denote the prerequisites
and expected behaviors of a certain test scenario, respectively.
B(s) denotes the predicate representing the behavior B for
a given subject s. O denotes deontic operators, including
must, should, may, and recommend, which correspond to the
importance levels. A test scenario can be described as follows.

P → Verify(∀s ∈ S, O(B(s)))

That is, given that P, then verify that for all test subjects s
in S, it is obligatory (must/should/may/recommend) that they
exhibit expected behaviors B. For instance, the scenario in the
first row of Table I can be described as “given code outside the
enclave passes secret data into the enclave, then verify that
for all Enclave’s debug flags must be configured as false.”

b) For Test Oracles: The elements above can also for-
malize the test oracles. Let pass(s) denote a predicate that is
true if the test case for subject s passes, and fail(s) denote a
predicate that is true if the test case for subject s fails. Then,
a test oracle can be described as follows.

P → ∀s ∈ S [(B(s) → pass(s)) ∧ (¬B(s) → fail(s))]
That is, given that P, then for all test subjects s in the set S,

if the expected behavior B occurs for subject s, the test case for
that subject passes, otherwise, it fails. For instance, the above



scenario’s corresponding oracle can be described as “given
code outside the enclave passes secret data into the enclave,
then for all Enclave’s debug flags, if they are configured as
false, then the case passes, otherwise, it fails.”

D. Principles of Testing in SGX
We identified four testing principles from the above dataset.
P-1: Never trust the outside world. SGX’s threat model

presents that only the enclave is secure, while everything
outside it can be compromised at any time. Hence, the code
and data within the enclave must never trust the outside
world and should always be prepared for unexpected outside
behaviors. In terms of testing, an SGX project should always
check the validity and reliability of information originating
from the outside world. Furthermore, the project must incor-
porate necessary handler code to enhance resilience against
unexpected behaviors executed by entities outside the enclave.

P-2: Inside code may run into issues. While the outside
world should never be trusted, there are also risks associated
with the code within the enclave, including security vulner-
abilities, execution bugs, and performance issues. In general,
the more code included within the enclave, the greater the
possibility for security risks and bugs, and the larger the
potential for performance cost. It is crucial for SGX projects to
minimize the enclave size and ensure high code quality within
the enclave. In terms of testing, an SGX project should verify
the necessity of the code inside the enclave and ensure that the
code adheres to proper security and performance guidelines.

P-3: SGX itself may not be entirely reliable. Nothing is
perfect, nor is SGX. Despite its robust protection mechanisms,
SGX has inherent limitations and vulnerabilities. For example,
its enclaves do not support certain hardware features and
instructions. Furthermore, SGX is not naturally immune to
specific types of attacks (e.g., side-channel attacks). In terms
of testing, an SGX project should contain proper handler code
or mitigation strategies to protect against vulnerabilities and
minimize limitations, which should be ensured through testing.

P-4: Configuration matters. Like other complex systems,
SGX includes many configurable attributes, such as debug
flags, enclave attributes, compiler options, and more. An
improper configuration may lead to security risks or trigger
execution bugs. Hence, verifying that these configurations are
properly set is a crucial aspect of SGX testing.

E. Overlooked Runtime Tests
All the principles above contain runtime issues. For in-

stance, the behavior of functions outside of the enclave can
change at runtime (P-1), enclave code may fail and raise
exceptions at runtime (P-2), attacks can be carried out by
malicious actors at runtime (P-3), and configurations may be
tampered with at runtime (P-4). However, we found no explicit
runtime test scenarios or code in our datasets or the Intel
SGX Developer Guide. To assist SGX testing and security
engineers, we recommend focusing on two key aspects:

a) For P-1 and P-4: We recommend building a monitor
that checks the following at runtime: (1) The order of functions
within enclaves called by external entities to ensure it is

correct; (2) OCall behaviors to verify they meet expectations,
including scenarios where they are not executed as anticipated
or are not executed at all; (3) The enclave loading process to
confirm that correct hosts load it and that the loading proceeds
as expected; (4) The configuration values to ensure they are
set correctly; (5) All of the above elements should be verified
and remain untouched thereafter.

b) For P-2 and P-3: Predicting code failures and ef-
fectively defending against attacks at runtime is challenging.
While incorporating necessary error handling into code is
important, we can also approach runtime failures and at-
tacks as valuable test cases. This method, which we call the
“Failure/Attack as a Test Case” philosophy, aims to collect
information for further analysis. Hence, we recommend that
the execution code include necessary logging and a log dump
feature to capture useful information, even in the event of a
system crash, enabling more effective subsequent testing.

VI. SGX IN THE CLOUD

This section outlines our method for gathering user feedback
on cloud-based SGX and discusses our findings.

A. Methodology & Dataset
a) A Search-based Approach: We create a dataset of

user feedback on “SGX in the cloud” by searching online
resources from Intel-recognized cloud vendors (Microsoft
Azure [26], [27], Alibaba Cloud [5], IBM Cloud [14], [15],
OVH Cloud [30]) and the StackExchange network [16]. In
particular, we search for the keyword “sgx” on cloud vendors’
websites. For the StackExchange network, we use a crawler to
look for “cloud” and filter results for “sgx” in titles and content
to ensure relevance. We also manually search for “sgx, cloud”
on the StackExchange site to maximize our results. After that,
we manually analyze each record to remove invalid entries.
A record is considered valid only if it pertains to both SGX
and cloud computing, such as remote attestation (i.e., verifying
whether the cloud server executes code within enclaves) and
SGX support for Golang (i.e., a language widely used in cloud
services). We also remove records that are not from users, such
as technical instructions from cloud providers.

b) Dataset: From the cloud vendors’ websites, we iden-
tified 6 valid records out of 23 searched results using the
aforementioned search method. From the StackExchange net-
work, we initially found 235,268 records in our first round of
searching for “cloud”. After filtering for “sgx,” we obtained
38 relevant records. Additionally, a manual search for “sgx,
cloud” yielded 37 records. Among these records from the
StackExchange network, we identified 10 valid ones. In total,
our user-based dataset consists of 16 valid records.

B. Results and Findings
Finding 4: From the users’ perspective, “SGX in the cloud”

appears to have received little attention and has not been
widely adopted. As a mature commercial technology has been
rolled out for 10 years, we assumed that there would be plenty
of feedback, questions, and discussions about SGX online.
Surprisingly, we found only 16 valid records regarding SGX



in the cloud3. Similarly, for SGX-supported cloud platforms,
there is a noticeable lack of user questions or community posts
that explicitly reference SGX. Notably, both Alibaba Cloud
and IBM Cloud, each of which maintains large, actively-
moderated forums and dedicated user-feedback portals, show
no trace of SGX-related discussions.

Fig. 4. Targeted Cloud Platforms for SGX.

In our dataset, as shown in Figure 4, the most frequently
targeted cloud platform for SGX is Microsoft Azure (6 posts),
followed by OVH Cloud, Google Cloud, and Corda (1 post for
each). The remaining posts are not directed toward any specific
cloud platform. One possible reason for the phenomenon is
that SGX always serves as a foundational component rather
than as a user-facing application. As a result, users—such
as developers, testers, and end-users—might either not notice
SGX’s presence or have limited opportunities to use it for
implementing specific features. We plan to conduct a future
user survey to better understand this phenomenon.

Fig. 5. User-concerned Scenarios for SGX in the Cloud

Finding 5: The most user-concerned scenarios for SGX in
the cloud is about SGX support. As shown on the left side
of Figure 5, 69% of user discussions revolve around how or
if SGX can support a platform or technique. The other topics
include SGX limitations (e.g., its memory capacities), remote
attestation (e.g., ensure code runs in enclaves), and Intel’s SGX
updates (e.g., security patches).

Within the “SGX support”, as illustrated on the right side
of Figure 5, there are a variety of application scenarios. These
include SGX support for Kubernetes (3 posts), blockchain (2
posts), cloud platforms (2 posts), file systems (1 post), network
traffic data (1 post), programming languages (1 post), and AI
(1 post). We have made the detailed posts available online.

3Searching for “sgx” on StackExchange returns 1,352 records, while
“cloud” results in 235,268. This indicates that SGX topics, even without cloud
adoption, are not very popular among users.

C. Insights about Testing SGX in the Cloud

a) Importance: Finding 4 implies the significance of
testing SGX in the cloud. That is, cloud developers and testers
may easily overlook SGX, resulting in neglect of maintaining
and executing test code. Furthermore, if the SGX-related
code that has been overlooked contains errors, debugging or
resolving these issues can be particularly challenging.

b) Variety: Finding 5 emphasizes the variety of testing
scenarios for SGX in the cloud. That is, it is essential to
create test cases for specific scenarios such as Kubernetes,
file systems, blockchain, AI, and more. Additionally, SGX’s
inherent attributes and features, such as memory limitations
and remote attestation, should also be verified. Further, we
need to verify whether updates to Intel’s SGX could introduce
security vulnerabilities or execution bugs in cloud services.

VII. THREATS TO VALIDITY

The internal validity is threatened by our manual analysis
method. That is, when analyzing the SGX-related test code,
test scenarios, and user feedback, our manual analysis process
may lead to the loss of valid records. To mitigate this threat, we
involved AI-assisted analysis for the test code, and repeatedly
reviewed our scenario results and user feedback records more
than four times. The external validity is threatened by the
limitations of our data sources. That is, the collected SGX
projects and test codes may not fully represent real-world
testing characteristics. Additionally, our analysis of Intel’s
official documentation and our search of online sources may
not have covered every possible test scenario or relevant user
posts on cloud-based SGX. To mitigate these threats, we have
made all of our datasets available online, allowing practitioners
to contribute additional information and insights.

VIII. RELATED WORK

1) Survey on SGX: Intel’s SGX has attracted significant
research attention as a commercial TEE solution. Zheng et
al. conducted a literature review of SGX, analyzing its appli-
cations, attack approaches, and its pros and cons from over
100 papers [41]. Nilsson et al. examined the literature and
extracted 24 distinct attacks against SGX, which they then
organized into 7 categories [29]. Will et al. surveyed 293
papers and classified SGX applications by goals and contexts.
[39]. Fei et al. surveyed existing SGX security vulnerabilities
and countermeasures, and introduced the first two sets of
criteria to evaluate them [9]. Van Schaik et al. surveyed
and categorized publicly known SGX hardware attacks [36].
Although these studies revealed SGX’s application scenarios,
vulnerabilities, attacks, and defense strategies, they overlooked
the status quo of testing in SGX. Additionally, they based their
survey primarily on papers rather than real-world projects.

2) Testing on SGX or other TEE solutions: Prior studies
of testing on SGX can be divided into two main groups: per-
formance benchmarking of the SGX system and fuzz testing
of SGX projects. In the first group, Kumar et al. proposed a
benchmark suite for SGX and listed parameter configurations
for ten tested workloads [23]. Hasan et al. benchmarked SGX



to evaluate which workloads are better for porting or shimming
and the performance effects of each [13]. Coppolino et al.
conducted performance testing and comparison of four TEE
solutions under real-world conditions [8]. The second group
consists of fuzzing frameworks that identify vulnerabilities in
SGX projects, including EnclaveFuzz [6], FUZZSGX [21],
SEnFuzzer [40], SGXFUZZ [7], etc. These research studies
have improved SGX-related testing methods but lack connec-
tions to real-world test scenarios and oracles.

3) Survey on SGX/TEE in the Cloud: There is a scarcity
of comprehensive surveys on SGX or TEE in the cloud, and
none of them focus on the user’s perspective. Miriyala et al.
compared the SGX services of AWS and Azure [28]. Li et
al. surveyed three types of TEE-based secure computation
protocols that can be applied in cloud [25]. Lei et al. studied
SGX’s application in blockchain, highlighting challenges in
four layers and the solutions it provides [24].

IX. CONCLUSION

In this paper, we conduct a comprehensive study on SGX’s
testing, involving three components: (1) studying real-world
test code, (2) analyzing and formalizing test scenarios and
oracles, and (3) exploring users’ SGX practices in the cloud.
Our work resulted in three datasets and a series of findings that
can inform and guide both academia and industry practitioners
in improving SGX and other TEE-based applications.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable com-
ments that enhanced this paper. This research is supported by
Beijing Natural Science Foundation (Grant No. 4232019).

REFERENCES

[1] “CVE-2017-6131.” www.cve.org/CVERecord?id=CVE-2017-6131.
[2] “CVE-2021-39014.” www.cve.org/CVERecord?id=CVE-2021-39014.
[3] “CVE-2022-39397.” www.cve.org/CVERecord?id=CVE-2022-39397.
[4] “CVE-2023-32990.” www.cve.org/CVERecord?id=CVE-2023-32990.
[5] Alibaba, “Alibaba Cloud,” 2025, https://www.aliyun.com/.
[6] L. Chen, Z. Li, Z. Ma, Y. Li, B. Chen, and C. Zhang, “Enclavefuzz:

Finding vulnerabilities in sgx applications,” in Network and Distributed
System Security (NDSS) Symposium, 2024.

[7] T. Cloosters, J. Willbold, T. Holz, and L. Davi, “{SGXFuzz}: Efficiently
synthesizing nested structures for {SGX} enclave fuzzing,” in 31st
USENIX Security Symposium (USENIX Security), 2022, pp. 3147–3164.

[8] L. Coppolino, S. D’Antonio, G. Mazzeo, and L. Romano, “An ex-
perimental evaluation of tee technology: Benchmarking transparent
approaches based on sgx, sev, and tdx,” Computers & Security, vol.
154, p. 104457, 2025.

[9] S. Fei, Z. Yan, W. Ding, and H. Xie, “Security vulnerabilities of sgx and
countermeasures: A survey,” ACM Computing Surveys, vol. 54, no. 6,
pp. 1–36, 2021.

[10] Y. Gao, X. Hu, T. Xu, X. Xia, D. Lo, and X. Yang, “Mut: Human-
in-the-loop unit test migration,” in Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering, 2024, pp. 1–12.

[11] GitHub, Inc., “GitHub REST API documentation,” 2025, https://docs.
github.com/en/rest?apiVersion=2022-11-28l.

[12] GlobalPlatform, “GlobalPlatform, TEE system architecture,
technical report,” 2022, https://globalplatform.org/specs-library/
tee-system-architecture/.

[13] A. Hasan, R. Riley, and D. Ponomarev, “Port or shim? stress testing
application performance on intel sgx,” in 2020 IEEE International
Symposium on Workload Characterization. IEEE, 2020, pp. 123–133.

[14] IBM, “IBM - Cloud, PowerVS and Ceph aaS - Structured Ideas,” 2025,
https://ibmcloud.ideas.ibm.com/.

[15] ——, “IBM TechXChange Community,” 2025, https://community.ibm.
com/community/user/my-community.

[16] S. E. Inc, “Stack Exchange,” 2025, https://stackexchange.com/.
[17] Intel, “Intel® Software Guard Extensions (Intel® SGX) SDK

for Windows* OS ,” 2020, https://cdrdv2-public.intel.com/671508/
sgx-sdk-developer-reference-for-windows-os.pdf.

[18] ——, “Intel Processors Supporting Intel SGX,” 2025,
https://www.intel.com/content/www/us/en/architecture-and-technology/
software-guard-extensions-processors.html.

[19] ——, “Intel Software Guard Extensions (SGX),” 2025, https:
//www.intel.com/content/www/us/en/products/docs/accelerator-engines/
software-guard-extensions.html.

[20] ——, “Intel® Software Guard Extensions Developer Guide,” 2025,
https://www.intel.com/content/www/us/en/content-details/738855/
intel-software-guard-extensions-developer-guide.html.

[21] A. Khan, M. Zou, K. Kim, D. Xu, A. Bianchi, and D. J. Tian, “Fuzzing
sgx enclaves via host program mutations,” in 2023 IEEE 8th European
Symposium on Security and Privacy (EuroS&P). IEEE, 2023.

[22] D. J. Kim, J. Yang, and T.-H. Chen, “A first look at the inheritance-
induced redundant test execution,” in Proceedings of the IEEE/ACM
46th International Conference on Software Engineering, 2024.

[23] S. Kumar, A. Panda, and S. R. Sarangi, “A comprehensive benchmark
suite for intel sgx,” arXiv preprint arXiv:2205.06415, 2022.

[24] H. Lei, Q. Wang, W. Shi, and Z. Bao, “A survey on the application of
sgx in blockchain area,” in International Conference on Blockchain and
Trustworthy Systems. Springer, 2020, pp. 633–647.

[25] X. Li, B. Zhao, G. Yang, T. Xiang, J. Weng, and R. H. Deng, “A
survey of secure computation using trusted execution environments,”
arXiv preprint arXiv:2302.12150, 2023.

[26] Microsoft, “Microsoft Azure Share your Ideas,” 2025, https://feedback.
azure.com/d365community/.

[27] ——, “Microsoft Community Hub,” 2025, https://techcommunity.
microsoft.com/.

[28] N. S. Miriyala, K. B. Macha, S. Metha, and D. Dave, “Comparative
review of aws and azure confidential computing systems,” 2024.

[29] A. Nilsson, P. N. Bideh, and J. Brorsson, “A survey of published attacks
on intel sgx,” arXiv preprint arXiv:2006.13598, 2020.

[30] OVH SAS., “OVHcloud Community,” 2025, https://community.
ovhcloud.com/community.

[31] L. Pryimenko, “7 examples of real-life data breaches caused
by insider threats,” 2024, https://www.syteca.com/en/blog/
real-life-examples-insider-threat-caused-breaches.

[32] A. Rao, “Rising to the Challenge — Data Secu-
rity with Intel Confidential Computing,” 2022, https:
//community.intel.com/t5/Blogs/Products-and-Solutions/Security/
Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/
1353141.

[33] The New Daily, “Federal government to force tech giants to reveal
user data,” 2018, https://thenewdaily.com.au/news/national/2018/08/14/
tech-surveillance-laws/.

[34] F. Toffalini, M. Payer, J. Zhou, and L. Cavallaro, “Designing a prove-
nance analysis for sgx enclaves,” in Proceedings of the 38th Annual
Computer Security Applications Conference, 2022, pp. 102–116.

[35] S. Van Schaik, A. Kwong, D. Genkin, and Y. Yarom, “Sgaxe: How sgx
fails in practice,” 2020.

[36] S. Van Schaik, A. Seto, T. Yurek, A. Batori, B. AlBassam, D. Genkin,
A. Miller, E. Ronen, Y. Yarom, and C. Garman, “Sok: SGX. Fail: How
stuff gets exposed,” in 2024 IEEE symposium on security and privacy
(SP). IEEE, 2024, pp. 4143–4162.

[37] J. Wang, Y. Cheng, Q. Li, and Y. Jiang, “Interface-based side channel
attack against intel sgx,” arXiv preprint arXiv:1811.05378, 2018.

[38] N. Weichbrodt, P.-L. Aublin, and R. Kapitza, “sgx-perf: A performance
analysis tool for intel sgx enclaves,” in Proceedings of the 19th Inter-
national Middleware Conference, 2018, pp. 201–213.

[39] N. C. Will and C. A. Maziero, “Intel software guard extensions appli-
cations: A survey,” ACM Computing Surveys, vol. 55, no. 14s, 2023.

[40] D. Yu, J. Wang, H. Fang, Y. Fang, and Y. Zhang, “Senfuzzer: Detecting
sgx memory corruption via information feedback and tailored interface
analysis,” in Proceedings of the 26th International Symposium on
Research in Attacks, Intrusions and Defenses, 2023, pp. 485–498.

[41] W. Zheng, Y. Wu, X. Wu, C. Feng, Y. Sui, X. Luo, and Y. Zhou, “A
survey of intel sgx and its applications,” Frontiers of Computer Science,
vol. 15, no. 3, p. 153808, 2021.


