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Abstract—Trusted Execution Environments (TEE) serve as a
fundamental trust infrastructure of smartphones. By placing
critical code and data inside TEE, smartphone apps ensure
their confidentiality and integrity, even with a compromised
outside system. However, there is a lack of studies on the
usage of TEEs on smartphones. To that end, we conduct a
comprehensive empirical study, demystifying smartphone-based
TEEs, TEE-based apps, and their interactions. Specifically, our
study answers threefold questions: (1) how are TEEs designed
for smartphones, (2) what do the TEE-based apps look like, and
(3) how do these apps use TEE? To answer these questions,
our research investigates 17 TEE systems and more than 10,000
real-world Android apps across over 50 regular and malicious
app categories. To automate the investigation, a tool that detects
if an app uses TEE (i.e., TEE-based apps) has been provided.
Our findings can provide practical guidance for app testers to
generate valid TEE test cases, for TEE vendors to optimize their
TEE solutions, and for security researchers and developers to
enhance their protection mechanisms.

Index Terms—trusted execution, mobile security, mobile apps

I. INTRODUCTION

With the proliferation of mobile device usage, trust has
become a pressing concern. The Trusted Execution Environ-
ment (TEE) emerges as a trust infrastructure, providing an
isolated environment that helps to ensure confidentiality and
integrity for both code and data. To seize this opportunity
to offer more reliable mobile services, vendors have begun
implementing their own TEE solutions and integrating them
into smartphones. Nowadays, various smartphone-based TEEs
have been rolling out, such as Google’s Trusty [1], Samsung’s
TEEGRIS [2], Huawei’s iTrustee [3], and more. Following this
trend, a wave of “TEE-based” apps (i.e., the apps using TEE)
have emerged, leveraging TEEs to perform trust operations
(e.g., face/fingerprint authentication) and prevent external in-
terference with their code and data. Hence, it is crucial to have
a clear understanding of TEE-based apps, the TEE they are
based on, and their utilization of TEEs on smartphones.

Currently, three primary categories of studies exist: the
first group of studies surveys the characteristics of TEEs
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running not on smartphones [4], as well as how smartphone
apps use deep learning models [5], blockchain [6], and third-
party libraries [7]. However, these studies neither explore the
features of smartphone-based TEEs nor how smartphone apps
utilize TEEs. The second group analyzes the architecture and
features of smartphone-based TEEs. However, it only focuses
on a single TEE solution [8], five different TEE solutions [9],
or a single TEE application scenario [10]. Since more than
15 various TEEs exist, these studies have not comprehen-
sively represented smartphone-based TEEs. The third group
examines TEE-based apps and their TEE usage scenarios.
However, it lacks an analysis of commercial TEEs and real-
world smartphone apps [11]. It also overlooks important
categories of apps, such as malware and games, and omits
essential TEE application scenarios like Gatekeeper, which is
responsible for device pattern/password authentication [12],
[13]. Furthermore, their API-based TEE operation detector
utilizes an insufficient number of TEE APIs (about 200
compared to the approximately 600 APIs in our study) and
relies on a simple filename-matching method instead of reverse
engineering the native libraries (.so files), which reduces the
accuracy of their analysis [12], [13].

To bridge the knowledge gap, this paper presents an empiri-
cal study that explores a wide range of commercial TEE solu-
tions, a large number of both regular and malicious apps across
various categories, and essential TEE application scenarios.
The aim is to draw a comprehensive picture of smartphone-
based TEEs, TEE-based apps, and their interactions.

The study will answer the following questions:

RQ1 - How are TEEs designed for smartphones: Is
there a common architecture of smartphone-based TEEs? Is
there a typical communication channel between apps and TEE
operations? Do different TEEs share the same API standards?

RQ2 - What do the TEE-based apps, including both
regular and malicious ones, look like: What percentage of
apps use or do not use TEE? What categories of apps make
the most or least use of TEEs? Does the TEE usage relate to
the app’s rating scores or installs?

RQ3 - How do regular and malicious apps use TEE:



What are the most common TEE operations in all detected
apps and specific categories? What are typical application
scenarios of TEE-based apps? Are there similar application
scenarios for malicious and regular apps when using TEE?

To answer RQ1, we collected technical documents or source
code from 17 smartphone-based TEEs developed by various
vendors. We then manually analyzed and extracted their de-
sign, architectures, and APIs. To address RQ2 and RQ3, we
followed three steps. First, we obtained installation packages
of over 10,000 Android apps, belonging to 33 legitimate app
categories and 20 malicious categories, respectively. Second,
we developed a new tool that automatically examines the
obtained packages to identify apps that use TEE. Finally, we
gathered metadata for the identified apps and analyzed their
characteristics and TEE usage.

We have summarized our key findings as follows: For
RQ1, (1) The primary mobile system that smartphone-based
TEEs target is Android; (2) Global Platform (GP)’s standard
APIs for TEEs have been widely adopted, but few TEEs have
obtained GP’s certification; (3) The technical details of many
smartphone-based TEEs remain a mystery.

For RQ2, (1) Overall, TEE is more commonly used in
regular apps than malicious ones. However, some types of
malicious apps may utilize TEE at a high rate; (2) The use of
TEE is positively correlated with the popularity of the app (i.e.,
rating scores and installs); (3) Both regular and malicious apps
apply the Indirect Channel to communicate with the
secure world instead of the Direct Channel (See § IV-D).

For RQ3, (1) The most popular scenario for TEE is the
“cryptographic operations”; (2) When it comes to authenti-
cation scenarios, ‘biometrics-based authentication” is more
prevalent than the “pattern/password-based authentication”; (3)
In TEE application scenarios, there is a clear distinction be-
tween different categories of apps, but the difference between
regular and malicious apps is not noticeable.

The contribution of this paper is as follows:

(1) A comprehensive empirical study on smartphone-
based TEEs, TEE-based apps, and their interactions: We
have studied 17 smartphone-based TEEs and analyzed over 50
app categories, covering both regular and malicious apps, total-
ing more than 10,000 real-world Android apps. Our study sum-
marized a common architecture of smartphone-based TEEs
and identified two typical communication channels for TEE-
based apps. Additionally, we presented a series of new findings
of TEE usage and provided a set of recommendations for TEE
vendors, app testers, and security researchers and developers.

(2) A new TEE operations detector on both managed and
native levels: We have developed a tool that can automatically
identify TEE-based apps in both managed (i.e., code written
in managed languages like Java or Kotlin) and native levels
(i.e., code written in native languages like C/C++). Given the
installation package of an Android app (.apk), the tool first
reverse engineers it to the managed and native levels, and then
determines if the app performs TEE operations by matching
app invocations with APIs among more than 600 TEE direct
or indirect APIs.

(3) Three TEE-related datasets: We have created three
datasets: one for installation packages and metadata of TEE-
based apps, one for official documents of smartphone-based
TEEs, and one for specifications of TEE APIs. We release
the prototype of our detection tool along with the datasets at:
https:/github.com/WesternHunter/Android- App-Analysis

II. BACKGROUND

(1) TEE solutions: on-smartphone vs. others. TEE [14]
is a hardware-software collaborated infrastructure to ensure
the secure processing of code and data. To enhance their
products’ security, many IT companies design and implement
their own TEEs. These emerged TEEs are designed for dif-
ferent scenarios: Intel’s Software Guard Extensions (SGX)
[15] has already been integrated into multiple product lines
of their processors, so that running on an enormous number
of desktops and laptops [16]. Similarly, ARM’s TrustZone,
which incorporates ARM chips, is widely utilized in IoT
and embedded systems. As smartphones become increasingly
important, mobile vendors start designing and customizing
TEEs for their devices, such as Google’s Trusty [1], Huawei’s
iTrustee [3], Samsung’s TEEGRIS [2], Apple’s Secure En-
clave [17], Qualcomm’s QTEE [18], and more. These TEEs
collaborate with specific mobile platforms for securing apps’
code and data. In contrast to desktops, laptops, IoTs, and other
embedded devices, smartphones become the most common
devices used in our everyday lives, having a vast number and
variety of apps and computing on limited resources. Hence,
it is crucial to comprehend the design and usage of TEEs on
smartphones (we call them smartphone-based TEEs).
(2) TEE APIs & TEE-based Apps. Global Platform (GP)
[19], a cross-industry international standardization organiza-
tion, has established a standard specification of TEE APIs.
However, using these standard APIs is not mandatory, so
vendors can either comply with the GP’s APIs or provide
alternatives on their own. Hence, both of these situations
should be considered when investigating the usage of TEEs.

Since these designated APIs bridge the TEE’s normal and
secure worlds, a smartphone app can communicate with TEEs
to perform secure operations via these APIs. In this paper, we
refer to an app that uses TEE as a “TEE-based” app. Besides,
due to Android’s dominant market share in smartphones, we
are focusing on Android apps. Android provides SDK and
NDK to control an app’s lifecycle and allow native code
implementation with languages such as C and C++. There-
fore, we hypothesize that an Android app can communicate
with TEEs using two methods. The first method is indirect
invocation, where an app interacts with the TEE through
Android framework APIs (i.e., SDK). The second method
is direct invocation, where an app directly calls TEE APIs
through native layer functions (i.e., NDK). We will confirm our
hypothesis by analyzing smartphone-based TEEs and TEE-
based apps (discussed in § IV-D).

III. METHODOLOGY

In this section, we first introduce our research goal and
scope, and then we present our solution overview.



A. Goal and Scope

(1) Research Goal: This paper aims to explore the
smartphone-based TEEs, TEE-based apps, and their interac-
tions. It thus covers two study subjects: (1) smartphone-based
TEEs, including their standard architecture, communication
channels, and APIs (discussed in § 1V), and (2) TEE-based
apps, including their characteristics and application scenarios
(discussed in § V).

(2) Scope: For smartphone-based TEEs, we explore existing
commercial TEE solutions on different smartphone systems,
such as Android, Harmony, and iOS, to draw a comprehensive
picture of how TEEs are designed and worked. We opted for
commercial TEEs instead of academic offerings to showcase
mature solutions and systems. We believe that the analysis
results generated by these commercial TEEs hold greater
value and significance for testers, TEE vendors, and security
researchers and developers.

For TEE-based apps, we focus on Android apps, more
specifically, TEE-based Android apps. We choose Android
for three reasons. (a) Android has the highest market share
among smartphones: according to StatCounter, Android held
about 70% of the global mobile market as of the end of
March 2024 [20]; (b) Android has an enormous number
of apps: according to 42matters, there are over 3.2 million
Android apps available on Google Play Store in 2024 [21];
(c) Android has been commonly used by many smartphone
vendors: due to Android being an open-source system, many
vendors customize the original Android system to create their
own system. Examples of such vendors include Samsung,
Sony, and Xiaomi. Although we focus on Android apps, our
analysis approach and results can provide insights for apps
running on other mobile systems.
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Fig. 1. The workflow of our study

B. Solution Overview

Figure 1 presents the workflow of our solution, which
include two parts:

(1) Our study on smartphone-based TEEs (shown at the top
of the Figure 1) starts by gathering official documents from
various TEE vendors. After analyzing these documents, we
identify the TEEs that can be integrated into smartphones (i.e.,
smartphone-based TEEs) and extract a set of architectures and
communication channels from each solution. Next, we sum-

marize these different architectures and channels to propose
the common and typical ones.

(2) Our study on TEE-based Android apps (shown at the
bottom of the Figure 1) starts by gathering real-world Android
apps for their installation packages (i.e., APKs). These APKs
are transformed into analyzable code by using reverse engi-
neering techniques. Besides, we build a dataset of TEE APIs
from various data sources, including the above-mentioned doc-
uments, Android’s source code, and the Android Developers
website. Based on this dataset, we check if an analyzable code
invokes TEE operations via corresponding TEE APIs. If it
does, we add the identified apps to the TEE-based app dataset
while crawling and extracting its metadata, such as rating
scores and installs. Finally, we perform statistical analysis
on the metadata and TEE API’s call information to answer
aforementioned research questions.

IV. SMARTPHONE-BASED TEES

This section illustrates our empirical study on smartphone-
based TEEs.

A. Methodology and Assumptions

(1) Methodology. Our empirical study on smartphone-based
TEEs including two phases, collection and analysis.

a) Collection: To start our process, we begin by gath-
ering a list of mobile vendors online. Once we have the list,
we visit the vendors’ web pages and search for documents
and source code (if open-sourced) related to topics such as
“Trusted Execution Environment,” “Secure,” and ‘Privacy.”
This allows us to obtain any TEE-related materials and open-
sourced code available. In the end, we collect official docu-
ments such as white papers, technical reports, and developer
guidance from 23 vendors. These documents present the
vendors’ TEE solutions and products.

b) Analysis: We filtered out 17 smartphone-based TEEs
from the document collection by eliminating TEEs that cannot
be deployed on smartphones. Upon manually examining each
document, corresponding source code (if applicable), and
GlobalPlatform’s website, we obtain critical information for
each TEE. This information includes the targeted mobile
platform, supported TEE APIs, obtained security certifications,
system architectures, and communication channels. After ana-
lyzing the information, we uncover a common architecture and
two typical communication channels between mobile apps and
the secure worlds of TEEs.

(2) Assumptions. We assume that all the documents collected
from mobile vendors accurately describe their proprietary
TEE solutions. That is, assuming a document explicitly states
that their TEE solution targets Android and complies with
GlobalPlatform’s TEE API, we trust that this information is
accurate and dependable. In contrast, for security certification
provided by GlobalPlatform for TEE, we track the latest results
on their website [22] by the end of September 2024. To put it
simply, if a TEE has not been confirmed on GP’s website,
we assume that it does not possess GP’s certification and
vice versa. Additionally, we mark a TEE “Maybe” receive



certification if its certification is not listed on GP’s website,
but can be found on other websites.

TABLE 1
SUMMARY OF SMARTPHONE-BASED TEES
Solution Vendor Targeted Sys. API Cert. Details
iTrustee [3] Huawei HarmoryOS [23] GP Y Y
Kinibi [24] Trustonic Android GP & Proprietary ~ Maybe Y
QTEE [18] Qualcomm Android GP & Proprietary N Y
Trusty [1] Google Android Proprietary N Y
Secure Enclave [17]  Apple i0S Proprietary N Y
OP-TEE [25] Linaro Android GP N Y
TEEgris [2] Samsung Android GP & Proprietary Y Y
TEEI [26] Eastcompace Unknown Unknown N N
ISEE [27] BeanPod Android GP N N
‘WatchTrust [28] ‘Watchdata Android GP Maybe N
TEE [29] Rocky Core Tech.  Android GP N N
T6 [30] TrustKernel Android GP N N
Link-TEE [31] Alibaba Android GpP N N
MITEE [32] Xiaomi Xiaomi HyperOS' GP N Y
CoreTEE [33] Sequitur Labs Linux-based OS GP N Y
ProvenCore [34] ProvenRun Unknown GP N N
SierraTEE [35] Sierraware Unknown GP N N

B. Current Situations

Table I shows our studied TEEs, which covers 17 dissim-
ilar smartphone-based TEE solutions (shown in the column
“Solution”) from different vendors (shown in the column
“Vendor”). The column “Targeted Sys.” shows the targeted
mobile system, and the column “API” shows the supported
TEE API, both collected from their official documents and
source code. The column “Cert.” displays the GP’s certificate
of security evaluation, which we mark “Y” if the certificate
can be found on the GP’s website and vice versa. When a
certificate can be found online but not listed on GP’s website,
we label it “Maybe.” The “Details” column indicates whether
enough technical information about a given TEE is available
in their documentation or online.

Based on this information, we summarize the current situ-
ations of smartphone-based TEE as follows:

<Finding-1> the primary platform that smartphone-
based TEEs target is Android: 71.4% of the analyzed
TEEs claimed target Android platform (TEE with “Unknown”
targeted systems were excluded). Moreover, Xiaomi HyperOS,
targeted by MITEE, is based on Android. Also, Android is
a Linux-based OS that can deploy CoreTEE. Hence, if we
consider these two targeted systems to be Android, only 2 out
of 14 TEEs (excluding “Unknown” targeted systems) target
smartphone systems other than Android.

<Finding-2> GP’s standard APIs for TEEs have been
widely adopted, but few TEEs have obtained GP’s cer-
tification: 87.5% of the analyzed smartphone-based TEEs
either claimed to support standard GP APIs or to use these
APIs with proprietary APIs (TEE with “Unknown” API were
excluded). According to GP’s website, only 2 out of 16 TEEs
(excluding “Unknown” API) have obtained GP’s certificate for
TEE security.

<Finding-3> the technical details of many smartphone-
based TEEs still remain a mystery: Only 52.9% of the
analyzed TEEs provided details on their website or other
materials (e.g., whitepapers, developer guidances, and source
code). In other words, almost half of the analyzed TEEs
(marked by “N” in the column “Details”) only provided a

IAn Android-based mobile OS designed and implemented by Xiaomi.

brief overview of their targeted systems, supported APIs, and
TEE architectures/communication channels, without delving
into the specifics of how to implement or apply their own
proprietary TEE solutions.

C. Common Architecture

As shown in Figure 2, we find that a smartphone-based TEE
is commonly structured around following layers:

(1) Application Layer: The application layer is the topmost
layer of the system and allows for the operation of smartphone
apps. In the normal world (on the left-hand of Figure 2),
the Client Apps (CAs) represents the apps aiming to
communicate with the secure world, and the Normal Apps
(NAs) represents the regular smartphone apps (e.g., apps
downloaded from app stores online), which may or may not
access the secure world. In the secure world (on the right-
hand of Figure 2), the Trusted Apps (TAs) represents
the apps providing secure functionality to CAs or other TAs.
Technically, the TAs can be provided by third parties; they also
can be pre-installed by vendors (i.e., the Embedded TAs.)

(2) Application Framework Layer: This layer provides a set
of APIs (usually written in managed languages), simplifying
the use of lower layers’ components and services. Typically,
these APIs can be implemented as a wrapper of necessary
TEE-related libraries in the Core Services layer. In particular,
the FW APIs of CAs is invoked by CAs in the normal
world, and the FW APIs of TAs by TAs in the secure
world. It is worth noticing that providing these APIs in the
Application Framework layer is an option, because CAs and
TAs can also be implemented to communicate directly with
their corresponding lower-layer libraries.

(3) Core Services Layer: In the normal world, CA Libs,
written mostly in C/C++, aim to establish a communication
channel between CAs and TAs. CA Libs do this by expos-
ing necessary communication interfaces to upper layers and
forwarding message to the Core OS layer. Typically, these
interfaces can be exposed to the Application Framework or
Application layers. The interfaces exposed to the Application
Framework can be implemented through the aforementioned
FW APIs of CAs; those to the Application layer can be
implemented through native interfaces (e.g., JNI and NDK)
directly interacting with CAs. In practice, CA Libs can
contain the GlobalPlatform TEE Client APIs or (and) the
proprietary APIs offered by particular vendors.

In the secure world, TA Libs can also enable the connec-
tion between CAs and TAs, which is similar to CA Libs.
More importantly, TA Libs provide interfaces of secure
functionalities to TAs. To enable the communication between
CAs and TAs, TA Libs can expose interfaces to Core OS
for message relaying and processing. To enable the secure
functionalities for TAs, TA Libs can expose interfaces either
to the Application Framework layer through the FW APIs
of TAs or to the Application layer directly. In practice, TA
Libs can contain the GlobalPlatform TEE Internal APIs or
(and) the proprietary APIs offered by particular vendors.
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Fig. 2. The common architecture of smartphone-based TEEs

(4) Core OS Layer: In the normal world, this layer provides
a TEE Driver that enables communication between normal
and secure worlds. TEE Driver can interact with CA Libs
in the upper layer and the Secure Monitor in the lower layer,
and finally exchange messages with Trusted Kernel in
the secure world. In addition to communicating with TEE
Driver, Trusted Kernel provides scheduling and other
operating system management functions (e.g., task isola-
tion and inter-process communication) for both TAs and TA
Libs. Furthermore, Trusted Device Driver provides
communication between TAs and TEE’s Trusted peripherals
in hardware. In practice, mobile vendors always create their
specific TEE Driver, Trusted Kernel, and Trusted
Device Driver as the core of their TEE solutions.

(5) Secure Monitor Layer: This layer includes a Context
Switch Manager that simplifies the transition between
normal and secure worlds. To enable such a transition, a
specific instruction is utilized known as Secure Monitor Call
(SMC). Hence, the Context Switch Manager can pro-
vide handler services that the Core OS layer of both normal
and secure worlds can request via the SMC.

(6) Hardware Layer: This layer provides both public and
trusted peripherals. Noticing that the trusted peripherals, such
as the trusted UI (touchscreen and keyboard), NFC controller,
and secure storage, can only be accessed from the secure world
through the Trusted Device Drivers.

(7) Other Layers: In addition to the previously mentioned
layers, mobile vendors can offer additional layers to support
their specific TEE solutions. To host multiple isolated guest
operating systems, one can use a Hypervisor in the Core
OS layer. The guest OS can also provide the aforementioned
layers and communicate with the secure world. Besides, a TA
Runtime can be integrated to support TAs execution inside
the secure world. This runtime contains corresponding com-
pilers or virtual machines for certain programming languages.

D. Typical Communication Channels

As shown in Figure 3, two typical communication channels
enable an app to communicate with the secure world:

Client
Apps
(CAs)

Client
Apps
(CAs)

Secure
World

Secure
World

CALibs CALibs

@ ®
Fig. 3. Two channels between apps and smartphone-based TEE

(1) Indirect Channel: When a client application (CA) initiates
a TEE-based operation, it sends a request with necessary
data to APIs in the Application Framework layer (i.e., FW
APIs of CAs). The FW APIs of CAs then invokes cor-
responding functions in the CA Libs. Next, the CA Libs
routes the request to the TEE Driver, and then the Secure
Monitor. The Secure Monitor sends the request to
the Trusted Kernel. After receiving the request, the
Trusted Kernel determines which TA should handle it
and dispatches the control to the TA via the TA Libs and/or
FW APIs of TAs. Once a TA receives the control, it starts
executing corresponding TEE operations through FW APIs
of TAs, TA Libs, and Trusted Kernel, and obtains
return values and any processed data. After completion, the
TA returns control to the original CA via the reverse path.
To simplify the above process, Figure 3-(a) illustrates the
communication process in higher layers in the normal world.
That is, CAs calls FW APIs of CAs, and FW APIs of
CAs then calls TEE-related functions in the CA Libs. Hence,
from the CAs’s perspective, it only needs to invoke FW APIs
of CAs for performing TEE-base operations. In this case,
the TEE-related APIs in CA Libs are indirectly invoked by
CAs, we thus call this communication channel the “indirect
channel.” Note that the FW APIs of CAs is usually imple-
mented with managed languages (e.g., Java), which would be
the same language used to implement CAs.
(2) Direct Channel: As shown in Figure 3-(b), CAs can
directly interact with the CA Libs without FW APIs of
CAs (the rest of the process is the same as the “indirect
channel”). Note that CA Libs is typically implemented using
native languages, such as C or C++. Hence, CAs, especially
those that come pre-installed, can integrate a portion of CA
Libs as their dynamic or static libraries (.so or .a files).
Then, CAs can invoke with these libraries via native interfaces
like JNI/NDK. In this case, the TEE-related APIs within CA
Libs are directly invoked by CAs. Therefore, we call this
communication channel the “direct channel.”

E. Threats to Validity

The internal validity is threatened by the contents of our
collected documents. Some collected documents only provide
an overview of their solutions rather than technical details. The
external validity is threatened by the number and types of our
analyzed TEEs. Although we analyzed and summarized a rep-
resentative sample of smartphone-based TEEs, the collection
may still not be large enough to draw definitive conclusions.



To mitigate these threats, we plan to study academic TEEs,
compare them with commercial ones, and make our dataset
available online for practitioners to contribute more details.

V. TEE-BASED APPS IN THE WILD

This section details our approach to detecting and analyzing
TEE-based apps in the wild. Please keep in mind that our
detection approach is specifically tailored towards Android
apps, as stated in § III-A.

A. Methodology: detecting and analyzing TEE-based apps

As shown in Figure 4, our approach includes three phases:

TEE-API extraction, TEE-based app detection, and TEE-based
app analysis. We discuss each phase in detail below.
(1) Large-scale TEE-API Extraction. The objective of this
phase is to establish a comprehensive dataset of TEE APIs.
According to Findings 1 and 2 (in § IV-B), APIs provided
by GlobalPlatform (GP) are the dominant TEE APIs, and
Android is the most commonly targeted platform among the
smartphone-based TEEs. Hence, we gather TEE APIs from
four different sources, as shown at the top of Figure-4:
(a) Global Platform (GP), (b) Trusty (i.e., the built-in TEE
provided by Google), (c) the Android Developers website, and
(d) the Android Open Source Project (AOSP).

For (a), we extract APIs that can be invoked by CAs from
GP’s TEE Client API document [36]. For (b), we collect
dedicated APIs from Trusty API Reference [37]. For (c), we
search for TEE documents on the Android Developers website
[38] by using keywords such as “Trusted Execution Environ-
ment,” “(TEE),” “Trusted Application,” and “(TA).” Then, we
extract TEE APIs from the searched TEE-related guidance
and specifications. For (d), we use the above keywords to
search the entire Android codebase [39] for relevant comments
regarding TEE. Then, we extract TEE APIs from the matched
comments and their corresponding code snippets.

Finally, we create a dataset for all the extracted TEE APIs
above and categorize them into two types: Direct APIs and
Indirect APIs. The former includes the APIs from GP and
Trusty, which are placed in the CA Libs (as shown in
Figure 2.) CAs can integrate with Direct APIs as their dynamic
or static libraries and invoke them via native interfaces (e.g.,
JNI/NDK) (i.e., the “direct channel” discussed in § IV-D). The
latter includes the APIs from the Android Developers website
and AOSP, which are placed in the FW APIs of CAs. CAs
can invoke these APIs via regular functions (i.e., the “indirect
channel” discussed in § IV-D). We plan to release our TEE
API dataset as open source, enabling researchers to use and
contribute to it.

(2) TEE-based App Detection. To identify whether an An-
droid app uses TEE, we develop a software tool as shown at
the bottom of Figure 4. Given an Android app’s installation
package (.apk), our tool first decompiles it into two parts: the
native libs (i.e., .a and .so files), and the smali code (i.e., .smali
files). For this purpose, we utilize apktool to perform the
decompilation process. We then create a Lib analyzer and
a smali analyzer to check for TEE APIs in the native
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Fig. 4. Our approach to detecting and analyzing TEE-base apps in the wild

libs and smali code, respectively. If either analyzer detects the
presence of TEE APIs, we consider the app to use TEE and
add it to the dataset of “TEE-based apps.”

Specifically, we build the Lib analyzer on IDA, a
widely used decompilation tool for C and C++. First, the Lib
analyzer further decompiles the native libs to analyzable
code (.i64 file) with IDA. Then, it triggers an IDA script to
gather all the invocations’ information (e.g., function name,
parameters, return values) from the decompiled code. After
that, the Lib analyzer examines the TEE API dataset,
matching Direct APIs with the gathered invocations. If we
find an API that matches, we think the app utilizes TEE. The
reason why Lib analyzer only matches the Direct APIs
is that, technically, the native libs can be integrated with CAs
to provide Direct APIs.

We develop the smali analyzer. It first examines the
smali code files, identifying invocation points and extracting
all function calls’ information (e.g., function name, parame-
ters, return values). After that, the smali analyzer exam-
ines the TEE API dataset, matching Indirect APIs with the
gathered function calls. If we find an API that matches, we
think the app utilizes TEE. The reason why it only matches
the Indirect APIs is that the smali code is placed in FW APIs
of CAs to provide Indirect APIs.

It is worth noticing that we use a conservative approach
of matching Indirect APIs. That is, we label an app as TEE-
based if a given invocation in its smali code meets either of
the following conditions. (a) the invocation is matched with a
TEE API, based on function name, number of parameters, and
class it belongs to, but not parameter type. (b) the invocation’s
parameter type includes the class to which a TEE API belongs.
(c) some dedicated classes occur in the smali code where the
invocation is located. These classes are TEE-related and can
be used to indicate the TEE use.

(3) TEE-based App Analysis. Once we have acquired the
TEE-based app dataset, we can proceed to the analysis phase.
The dataset initially contains each TEE-based app’s installa-
tion package (.apk), package name, and TEE APIs invoked by
the app. Then, based on the package name, we create a crawler
with Google—-Play—-Scraper [40] to collect metadata for



each app, such as rating scores and installs. On the other
hand, we conduct a manual analysis of functional domains
for Indirect APIs>.

After studying on information collected from AOSP and
Android Developer website, we discovered five domains
of Indirect APIs: Keystore (i.e., cryptographic operations),
Gatekeeper (i.e., device pattern/password authentication),
Biometrics-based authentication (including face and finger-
print relevant operations), Android Protected Confirmation
(i.e., secure prompt displayed to end-users), and Digital Rights
Management (DRM). Then, we map these domains to the app-
invoked TEE APIs. With these domains and metadata, we
statistically analyze the relationships and trends, as discussed
in the following sections. We plan to open-source our app
dataset so that researchers can use and contribute to it.

B. Environment Setup

a) Real-world Apps: To carry out our empirical study,
we gathered two datasets of real-world apps: one for regular
apps and another for malicious apps. The former comes from
Google Play Store, where we obtained around 200 “Top Free”
apps® from each of the 33 categories defined by Google, using
google-play-scraper [41]. The latter comes from the
AndroZoo’s malicious apps dataset [42], where we randomly
selected 200 apps from each of 20 important types of malicious
apps. Most of these types are documented by Google [43].

After removing invalid apps (e.g., cannot be downloaded on-
line), our datasets contain 10,339 apps, including 6,349 regular
(33 categories) and 3,990 malicious apps (20 categories).

b) TEE APIs: In total, our dataset of TEE APIs con-
sists of the aforementioned Direct APIs and Indirect
APIs. The former contains 75 functions collected from the
specifications of GlobalPlatform and Trusty. The latter con-
tains 619 functions among Android modules of KeyStore (129
functions), Biometrics-based authentication (250 functions),
GateKeeper (152 functions), Digital Right Management(86
functions), and Android Protected Confirmation (2 functions).

Our tool identifies the use of TEE in an app by examining
matches between the app’s invocations and the TEE APIs
above. For the Indirect APIs, we examine complete
datasets of regular and malicious apps; for the Direct
APIs, we focus on a sample group of apps due to the
following reason: after examining 586 apps across three
regular categories and 186 apps sampled from all malicious
categories, we found no matches for Direct APIs. Hence,
we hypothesize that Android apps may not directly integrate
the CA Libs to invoke Direct APIs. To speed up the
examination and test the hypothesis, we sampled 30 apps from

2We did not analyze the functional domains of Direct APIs as it is mainly
concerned with establishing communication channels between the normal and
secure worlds. The IDs sent through Direct APIs, which identify the Trusted
app and certain TEE operations, are outside the scope of our work.

3In the Google Play Store, “Top Free” refers to the most popular free
apps. Note that we obtained a list of 200 “Top Free” apps, but some of their
installation packages are unavailable online. Therefore, the actual number of
obtained apps for each category may be slightly less than 200.

each remaining category and matched them with Direct
APTIs. All the results and findings are discussed below.

C. Characteristics of TEE-based apps

(1) Is TEE commonly used in apps?

a) Regular apps: Our result shows that 96.99% of
regular apps use TEE. The top three categories with
the highest use rates are “SPORTS”(100%), “TRAVEL_
AND_LOCAL’(99.50%), and “VIDEO_PLAYERS”(99.49%).
The bottom three are “WATCH_FACE”(86.96%), “LIBR-
ARIES_AND_DEMO”(90.40%), and “FAMILY”(91.44%).
Indeed, travel apps are more likely to collect sensitive user
location data; sports and video player apps may require users
to provide personal information and pay for live streaming or
other advanced features. All these functionalities need secure
operations. In contrast, certain apps such as watch faces,
demos, and children’s family games may not require extensive
TEE operations.

b) Malicious apps: Interestingly, only 38.80% of mali-
cious apps utilize TEE, which sets them apart from regular
apps. In general, malicious apps aim to compromise mobile
systems and apps instead of utilizing TEE to secure their
malicious operations. Specifically, our result shows that the
top three categories with the highest use rates are “Ransom”
(91.5%), “Spr” (65.5%), and “Smssend” (64.65%), while the
bottom three are “Fakeapp” (9.0%), “Clicker” (8.5%), and
“Monitor” (2.5%). It is reasonable for ransomware to utilize
TEE:s to secure its ransom-related operations from interception
and tampering. Features such as impersonation (“Fakeapp”),
auto-clicking (“Clicker”), and behavior monitoring (“Moni-
tor”) may not heavily depend on TEEs.

(2) What is the difference between TEE-based and non-
TEE apps? TEE-based apps have higher medians for rating
scores (4.32) and real installs (2,481,691) compared to non-
TEE apps with medians of 4.12 and 1,096,269, respectively.
In fact, both rating scores and real installs can be indicators
of an app’s popularity. The result shows that the use of TEE
is positively correlated with the popularity of the app. This
correlation may be due to TEE’s effective enhancement of the
app’s security.
(3) What communication channels are used by TEE-
based applications? According to our analysis, we did not
come across any apps that directly call upon the Direct
APIs located in the CA Libs, which corresponds to the
Direct Channel. That is, all functions that match are part
of the Indirect APIs located in the FW APIs of CAs,
which corresponds to the Indirect Channel (discussed
in § IV-C and § IV-D). Therefore, we deem that, when using
TEE, Android apps often indirectly invoke TEE APIs in the
CA Libs via Android’s framework APIs instead of directly
integrating the CA Libs to call the corresponding TEE APIs.
<Finding-4> Based on the results mentioned above, we
have identified three main characteristics of TEE-based apps:
(a) overall, TEE is more commonly used in regular apps than
malicious ones. However, some types of malicious apps may
utilize TEE at a high rate; (b) the use of TEE is positively



correlated with the popularity of the app (i.e., improve its
rating scores and installs); (c) both regular and malicious apps
apply the Indirect Channel to communicate with the
secure world instead of the Direct Channel.

D. The roles of TEE in apps

(1) What are TEE’s popular application scenarios? Af-
ter manually analyzing our dataset of TEE APIs and rel-
evant Android documents, we summarized five typical ap-
plication scenarios for TEE: cryptographic operations (i.e.,
Keystore), pattern/password-based authentication (i.e., Gate-
keeper), biometrics-based authentication (i.e., face and fin-
gerprint operations), secure prompts and warnings (i.e., the
process of Android protected confirmation ), and digital rights
management (i.e., DRM operations).

TABLE II
THE NUMBERS AND RATES OF TEE APPLICATION SCENARIOS.

Application Scenarios Regular Apps  Malicious Apps

Cryptographic Operations 5950(96.62%) 1449(93.60%)
Biometrics-based Authentication 3954(64.21%) 348(22.48%)
Pattern/Password-based Authentication 11(0.18%) 3(0.19%)
Secure Prompts and Warnings 203(3.30%) 0
DRM 179(2.91%) 108(6.98%)

Table II displays the number of regular and malicious apps
for each TEE scenario, respectively. It also shows the ratio
of this number to the total number of TEE-based regular and
malicious apps, respectively (i.e., values in brackets). Among
TEE-based regular and malicious apps, the top two popu-
lar TEE application scenarios are “cryptographic operations”
and “biometrics-based authentication.” At the same time, the
bottom one is “pattern/password-based authentication” for
regular apps and “secure prompts and warnings” for malicious
apps. Specifically, most regular and malicious apps use TEE
APIs for “cryptographic operations” (96.62% and 93.60%,
respectively) and “biometrics-based authentication” (64.21%
and 22.48%, respectively). Whereas, “pattern/password-based
authentication” and ‘“secure prompts and warnings” are used
very little (0.18% and 0%, respectively).

It is easy to project that the most popular scenario for
TEE is the “cryptographic operations,” because TEEs can
host cryptographic keys and code within the secure world
and provide a set of relevant APIs. Surprisingly, the scenario
of “biometrics-based authentication” is more prevalent than
that of “pattern/password-based authentication.” We believe
that there are two main reasons: (1) the use of face and
fingerprint-based operations has become popular in modern
Android apps.; (2) “pattern/password-based authentication” in
Android specifically refers to the lock-screen service, which is
used by system-level apps (e.g., the Settings app) other than
common apps we found on Google Play.

(2) What is the difference between app categories in TEE
application scenarios?

Tables IIl and IV show the top/bottom three regular and
malicious app categories in each TEE scenario, respectively.
They also show the ratio of apps in a category that applies a
specific scenario to the total number of apps in that category

(i.e., values in brackets). “NA” means there are more than three
categories have no apps that apply a specific scenario.

(a) For regular apps: As shown in Table III, in
fact, apps within the “PERSONALIZATION,” “SHOP-
PING,” and “ENTERTAINMENT” categories are more likely
to perform cryptographic operations than those within
the “FAMILY,” “WATCH_FACE,” and “LIBRARIES_AND_
DEMO” categories. Also, “FINANCE,” “GAME,” and
“MEDICAL” apps need more biometrics-based authenti-
cation than “PHOTOGRAPHY,” “MUSIC_AND_AUDIO,”
and “VIDEO_PLAYERS” apps. In addition to the “DAT-
ING,” “FOOD_AND_DRINK,” “PERSONALIZATION,” and
“LIFESTYLE” categories, we find that none of the apps in
the other categories uses pattern/password-based authentica-
tion. Furthermore, most of the apps in the “BUSINESS,”
“PRODUCTIVITY,” and “SHOPPING” categories make use
of secure prompts and warnings. Besides that, we find
that the majority of DRM operations are applied to cate-
gories that are intuitively irrelevant to digital rights (e.g.,
“FOOD_AND_DRINK,” “COMMUNICATION,” and “MED-
ICAL”). We plan to investigate this phenomenon in the future.

TABLE III

TOP AND BOTTOM-THREE REGULAR APP CATEGORIES IN EACH TEE
APPLICATION SCENARIO.

Bottom Three
FAMILY(90.06%),

LIBRARIES_AND_DEMO(84.92%),
‘WATCH_FACE(58.75%)

Application Scenarios Top Three

PERSONALIZATION(100%),
SHOPPING(99.49%),
ENTERTAINMENT(99.48%)
FINANCE(91.19%),
GAME(90.58%),
MEDICAL(88.64%)
DATING(4.44%),
FOOD_AND_DRINK(0.53%),
PERSONALIZATION(0.52%)
and LIFESTYLE (0.52%)

Cryptographic Operations

PHOTOGRAPHY (41.18%),
VIDEO_PLAYERS(40.21%),
MUSIC_AND_AUDIO(39.89%)

Biometrics-based Auth.

Pattern/Password-based Auth. NA*

BUSINESS(14.44%),
PRODUCTIVITY(13.37%), NA
SHOPPING(10.26%)
FOOD_AND_DRINK(12.30%),
COMMUNICATION(11.92%), NA
MEDICAL(9.66%)

Secure Prompts& Warnings

DRM

TABLE IV
TOP AND BOTTOM-THREE MALICIOUS APP CATEGORIES IN EACH TEE
APPLICATION SCENARIO.

Application Scenarios Top Three Bottom Three

Addisplay(100%),
Clicker(100%), Hacktool(100%),
Monitor(100%), Smssend(100%)

Exploit(61.02%),
Fakeapp(66.67%),
Malware(83.54%)3

Cryptographic Operations

Downloader(84.81%),
Fakeapp(66.67%), Exploit(45.76%)

Monitor(0%),

Biometrics-based Auth. Hacktool(1.11%), Smssend(5.47%)

Pattern/Password-based Auth. Spr(1.53%), Dropper(0.91%) NA

Secure Prompts& Warnings NA NA

Exploit(77.97%),
DRM Monitor(20.0%), Malware(7.59%) NA

(b) For malicious apps: In our analyzed malicious apps,
if they use TEE and belong to the “Addisplay,” “Clicker,”
“Hacktool,” “Monitor,” or “Smssend” categories, they will
always invoke cryptographic operations 100% of the time
(as shown in Table IV). In addition, the “Hacktool,” “Mon-
itor,” and “Smssend” prioritize cryptographic operations over
biometrics-based authentication more than other categories,
while the “Fakeapp” and “Exploit” do the opposite. Besides,
only “Spr” and “Dropper” leverage pattern/password-based

4“NA” means there are more than three categories have no apps that apply
a specific TEE scenario.

5“Malware” is an independent category in AndroZoo’s collection of mali-
cious apps.



authentication, and none of malicious app categories employ
secure prompts and warnings. Further, we find the “Exploit”,
which aims to exploit software or system vulnerabilities to
perform attacks, is more likely to use DRM operations than
other categories.

<Finding-5> Based on the results mentioned above, we
have identified three primary features of TEE scenarios: (1)
the most popular scenario for TEE is the “cryptographic
operations;” (2) when it comes to authentication scenar-
ios, ‘biometrics-based authentication” is more prevalent than
the “pattern/password-based authentication” in Android TEE-
based apps; (3) in TEE application scenarios, there is a clear
distinction between different categories of apps, but the dif-
ference between regular and malicious apps is not noticeable.

E. Threats to Validity

The internal validity is threatened by (1) obfuscated app
packages and (2) our conservative approach.

For (1), after decompiling obfuscated packages, the re-
sulting code may lose original textual information, such as
method and class names. Without this information, our de-
tection algorithm’s TEE API matching process would not
function properly. Fortunately, upon manual inspection of the
decompiled code, we discovered that the obfuscated app cases
are not common. Moreover, we found that in many of the
obfuscated apps, the function’s call sites retain the original
callee’s textual information in their resulting code (i.e., smali
code) even after decompiling. After careful consideration, we
believe that this obfuscation case will only slightly impact our
final results. Therefore, we decide not to consider it for now.

For (2), when collecting TEE APIs from Android’s docu-

mentation, we consider an Android function a TEE API if the
corresponding documents claim it “should” or “can” interact
with the secure world of TEE. This conservative process means
that whether the claimed interaction with TEE is mandatory or
not, we mark the involved functions as the TEE API. Hence,
our analysis may result in false positives. To mitigate this
threat, we plan to design a fine-granded approach to identify
the TEE APIs more accurately in the future.
The external validity is threatened by the limited number of
TEE APIs we have collected. That is, although we gather TEE
APIs from various sources such as official documentation,
websites, and source code, it is impossible to exhaust all
existing TEE APIs. To mitigate this threat, we will open-
source our datasets to allow continuous contributions from
other researchers to the TEE APIs dataset.

VI. GUIDANCE FOR TEE PRACTITIONERS

In this section, we provide suggestions to TEE practitioners
according to our study results and findings.
(1) For testers: based on our findings, all the analyzed apps
interact with TEE via functions in the Application Framework
Layer. Hence, most TEE operations in an app can be tested
by running test cases of the business logic in that layer.
(2) For TEE vendors: since the top two popular TEE applica-
tion scenarios are “cryptographic operations” and “biometrics-
based authentication,” we recommend vendors to optimize

their TEE operations in these scenarios to improve perfor-
mance. Besides, a cost-effective way to create a smartphone-
based TEE on the vendor’s own is to target the Android
platform and use standard APIs provided by GlobalPlatform.
(3) For Security researchers and developers:

a) About the interaction between TEE and apps: All of the
TEE-based apps we examined use the Indirect Channel
to communicate with the secure world, as opposed to the
Direct Channel. We believe that opening more channels
for third-party apps would enhance the development of both
TEEs and TEE-based apps. To that end, security researchers
and developers can create novel middleware to enable easy
communication between CAs and TAs, as well as a mecha-
nism for deploying them.

b) About malicious apps: Despite being less common than
in regular apps, our findings indicate that a significant number
of malicious apps make use of TEE. An app could conceal
malicious activities using TEE to evade secure analysis or anti-
virus tools. Therefore, security practitioners should not always
assume that TEE operations are harmless. Rather, TEE-related
operations from apps should be carefully examined.

VII. RELATED WORK

(1) Empirical study on mobile apps: Xu et al. empirically
studied real-world deep learning-based apps [5], and Wu et al.
studied blockchain-based ones [6]. Zhan et al. systematically
summarized the literature on third-party libraries’ (TPL) usage
in Android Apps [7]. Although these studies examine various
aspects of apps, none of them focuses on those using TEE. In
a latest research, Bove analyzed TEE-based apps to study their
common usage patterns [12], [13]. However, this study did not
take into account important app categories, such as malware
or games, nor did it consider the architecture of smartphone-
based TEEs and the interaction between TEEs and apps.

(2) Empirical study on TEEs: Liu et al. studied real-world
SGX (i.e., Intel’s non-mobile TEE solution) software [4].
Busch et al. analyzed the design/architecture of TrustedCore,
a TEE in Huawei’s earlier smartphones [8]. Cerdeira et al.
studied the architectures and security features of five dif-
ferent TEEs [9]. Nevertheless, since more than 15 existing
smartphone-based TEEs exist, these studies have not yet com-
prehensively covered them and their scenarios. Recently, Paju
et al. surveyed academic papers and GitHub repositories re-
lated to TEE, summarizing various application scenarios [11].
However, their work lacks an analysis of commercial TEEs
and real-world mobile apps.

(3) Detecting apps using certain modules: Xu et al. devel-
oped a detection tool that can effectively identify an Android
app that uses deep learning models [5]. Busch et al. created
a tool that can identify apps using TEE by analyzing TEE
libraries provided by TEE vendors [44]. The former focuses on
identifying the modules other than TEE. The latter is limited
by the vendor’s TEE libraries, which are not only difficult to
obtain, but also challenging to reverse engineer. Besides, Bove
developed a TEE operation detector based on TEE APIs [12],
[13]. However, their work did not collect a sufficient number



of TEE APIs (=200 vs. our ~600) and relied on a simple
filename-matching method instead of reverse engineering the
native libraries (.so files), which reduced the accuracy.

VIII. CONCLUSION

We have conducted an empirical study on smartphone-based
TEEs, TEE-based apps, and their interactions. In addition, we
developed a detection tool that can identify TEE-based apps.
By leveraging this tool, we have analyzed over 10,000 real-
world apps, both regular and malicious, across 53 categories,
and identified five findings that comprehensively depict both
corresponding TEEs and apps. Our analysis results and tool
can assist TEE vendors, app testers, and security researchers
and developers with their TEE-related work.
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