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Abstract—Being carried everywhere by end-users, smart-
phones constantly gather user data, some of which are pri-
vate (e.g., geolocations) and others public (e.g., accelerometer
readings). To protect against data leakage attacks, most mobile
platforms implement permission schemes that restrict access only
to private rather than public data. Ironically, such unprotected
public data can be craftily exploited by attackers, resulting
in an emerging threat of leaking users’ private information,
which we refer to as a Mobile Public-to-Private (MP2P) attack.
However, for this particular attack, the current surveys lack
details and need more focus on its distinct features, while the
proposed attack methods have become increasingly similar. To
better understand the MP2P attack, we conducted an in-depth
study of academic examples spanning over a decade (2012-2024).
Specifically, we first investigate and categorize public resources
that can be exploited to leak private information. Then, we
systematically explore the standard workflow and methodologies
of MP2P attacks. Further, we propose a new MP2P attack
method within a typical user scenario, taking flight. Based on our
experiments with real flight trips, our method successfully infers
passengers’ flight numbers, departure locations, destinations, and
routes. Having deeply analyzed MP2P attacks and unveiled a new
attack method, this paper can assist security engineers in devising
countermeasures against this attack.

Index Terms—user privacy, data leakage, public resources

I. INTRODUCTION
A. Motivation

Thanks to mobile technologies, smartphones have been
featured from simple communication devices to a complex
mobile ecosystem. Supported by its colorful services, modern
smartphones have become a part of our habits, our lives—
even more—"‘our bodies.” However, the deeper the smartphone
improves our lives, the more risks it may compromise our
privacy. In fact, to ensure various mobile services, a smart-
phone has to continuously collect our information regardless
of whether it is private. Most mobile platforms (e.g., Android
and i0OS) provide permission schemes that restrict the access
of private data, such as a user’s GPS locations and routes.
In contrast, public data (e.g., accelerometer readings) can be
arbitrarily obtained without any permissions.

Ironically, end-users’ private information can still be com-
promised from the “harmless” public data. Over the last
decade, many studies, including surveys (e.g., [1], [2], [14],
[32], [37], [44]), attack methodologies (e.g., [24] [46] [43]
[27] [17]), and attack detection techniques (e.g., [26] [36]

[6] [29] [38]), have showcased this type of attacks, which
is referred to as side-channel attacks, linkage attacks, or data
leakage attacks. However, as these attack names suggest, the
previous surveys focus on a broader problem domain rather
than the details and characteristics of this specific attack.
Furthermore, current research on attack methodologies and
detection techniques tends to focus on homogeneous methods,
which can be easier to defend against by using certain types
of countermeasures.

Thus, it is essential to study such a mobile-based attack,
which uses public data to infer private information. We refer
to this attack as a Mobile Public-to-Private (MP2P) attack. To
deeply comprehend the MP2P attack, we need to answer three
research questions:

o RQI: What type of public data can be exploited for
private data leakage, and how would these leakages
interact with each other?

o RQ2: What is the typical workflow of MP2P attacks, and
what are the most common attack methodologies?

e RQ3: Are there new attack methods or other types of
public data that can be used to leak users’ private data?

B. Our Work

This paper first conducts an in-depth empirical study of the
MP2P attack and then presents a new attack method using
previously unexploited types of public data.

To answer RQI1, we deeply studied prior work related
to MP2P attacks over a decade (2012-2024), including 6
literature surveys and 36 attack methodology and detection
technique papers. Specifically, we first gather public resources
from these works, categorize them, and analyze the data
types that MP2P attacks can exploit. Second, we associate
each public data category with the specific type of private
information targeted by MP2P attacks, along with the auxiliary
information required for the attack. Additionally, we explore
the connections between these types of private information, as
one type of private data could compromise other types.

To answer RQ2, we systematically analyzed a significant
amount of MP2P attack methods and scenarios. Specifically,
we first extract common characteristics of the MP2P attack
from the aforementioned papers, summarize the attack’s def-
inition, and generalize its workflow. Then, we categorize and
compare the attack’s specific methodologies.



To answer RQ3, we demonstrated a new MP2P attack
method exploiting some public resources that prior work
never studied. In particular, this method focuses on a specific
scenario — taking flight. That is, it discovers whether a
victim is on board and further infers his/her flight number,
departure/arrival time, destination, and itinerary by using the
public resources along with some auxiliary information online.

C. Contributions
The contribution of this work includes three folds:

1) We investigate and categorize public resources that can
be exploited for leaking private information, as well as
unveiling the interactions between leaked private data.

2) We conduct an in-depth study of research literature over
a decade, revealing typical workflows and methodolo-
gies of the Mobile Public-to-Private (MP2P) attack.

3) We present a novel method that leverages unstudied
public resources and auxiliary online knowledge to infer
victims’ flight information. An evaluation of two real-
world flight trips proves the effectiveness of this method.

We believe this research can encourage mobile users, de-
velopers, and researchers to reconsider the privacy of public
resources in daily life. Further, it can help airlines’ security
departments and mobile platform providers consider how to
balance the utility and privacy of the “public resources.”

II. SURVEY METHODOLOGY

This section outlines our study’s challenges and solutions
and then introduces our data collection and related surveys.

A. Challenges & Solutions

In previous studies, attacks related to the MP2P attack
have been referred to by various names, such as side-channel
attacks, linkage attacks, or data leakage attacks. However, a
common term has yet to be settled to describe the MP2P
attack. As a result, it is challenging to use specific keywords
when searching for related research papers.

We were fortunate to find a highly cited paper detailing
several MP2P attack methods [52]. Starting with this paper,
we employed a snowballing approach to conduct our literature
survey. Additionally, we continued to gather new keywords
(e.g., public resources, side channels, zero-permission) during
the snowballing process, and used these keywords to keep
searching for relevant papers.

To consider both the breadth and depth of the research, our
study not only analyzes the latest studies but also includes
classic ones that are highly cited. Furthermore, we don’t limit
our review to survey papers, but also include other types of
papers on MP2P attacks. Please note that we exclusively select
surveys and other papers focusing on the mobile field because
the MP2P attack targets mobile systems.

B. Data collection

We selected 42 papers spanning over a decade (2012-
2024) from hundreds of research papers that were searched.
These selected papers can be divided into three categories:

attack methodology (31 papers), attack detection technique (5
papers), and survey (6 papers). The first two discuss how an
attacker can exploit public resources to leak users’ private
information and how we can automatically identify which
public resources can be exploited. The last one reports the
status quo and characteristics of related attacks by reviewing
a specific scope of research literature.

C. Related Surveys

As illustrated in Table-I, we summarize related surveys in
five aspects (columns 2 - 6). We found that some of them
only study a single type of public data (e.g., accelerometer
[14], sensors [32], network [1], see the column “Multiple Data
Types”) or a single mobile system (e.g., Android [2], [44],
the column “Multiple Mobile Systems”). Furthermore, only
two of them (partially) investigate the interactions between
leaked information [14], [32] (the column “Leaked Data
Interactions”), or provide a standard workflow or the definition
of the attack [1], [37] (the column “Standard Workflow or
Definition™). In addition, none of them propose new attack
methods (the column “New Attack Method”). Our study, to
the best of our knowledge, is the first work that covers all the
five aspects mentioned above, presenting a unique perspective
that differs from previous surveys.
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“Multiple Data Types™: does it involve multiple types of public data?

“Multiple Mobile Systems”: does it include multiple mobile systems?

“Leaked Data Interactions™: does it investigate the interactions between leaked information?

“Standard Workflow or Definition”: does it provide a standard workflow or the definition of the attack?

“New Attack Method”: does it propose new attack methods?

III. PUBLIC RESOURCES, PRIVATE INFORMATION, AND
THEIR INTERACTIONS

In this section, we first present the exploitable public
resources and their linked private information. We then discuss
the interactions between the leaked information.

A. Public Resources to Private Information

Table II presents the private information being leaked (the
first column), the types of public data that can be exploited to
leak this information (the second column), and the exact public
data (the third column). This information is summarized from
the papers we reviewed (see § II-B).

In general, there are seven types of private information
that can be leaked through public data exploitation, including
“Location & Routes,” “App Behavior & Status” (e.g., installed
or running apps, browser/UI states, and all users’ activities on
those apps), “User & Device Identify” (e.g., user name and
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device IMEI/Brand/OS), “Keystroke” (e.g., keystrokes, screen
taps, soft-keyboard gestures, and user input), “Crentials” (e.g.,
password, crypto key, PIN, and unlock pattern), “Personal
Characteristic” (e.g., medical conditions, gender, and emo-
tion), and “Voice Info” (e.g., user voice).

Correspondingly, four types of public resources can be
exploited to compromise above private information, including
“Sensors” (e.g., accelerometer and gyroscope), “Processes &
System Info” (e.g., network, power, and other information in
the /proc files), “Peripherals” (e.g., microphone and speaker),
“Other” (e.g., photo files), and their combinations. Although
space constraints make it difficult to detail each row in the
table, it is evident that a large amount of public data, typically
considered “harmless,” can result in significant breaches of
user privacy.

B. Interactions between Leaked Information

Figure 1 illustrates the interactions between the seven types
of private information mentioned above. It is important to
note that the leaked information is not independent and can
be chained to cause a larger privacy breach. Specifically, we
summarize these links as follows.

(a) “Location&Routes” <> “App Behavior & Status”: Li et
al. used Wifi lists to obtain users’ locations and routes, and
then used this information to infer the victim’s daily activities
[15]. In contrast, Watanabe et al. first used sensor readings to
identify user activities (e.g., walking or on vehicles) and then
used this information along with train timetables and maps to
infer the user’s routes [42].

(b) “App Behavior & Status” — “User & Device Identify”:
Zhou et al. used mobile data usage values to analyze Twitter
apps’ behavior. Then, they leveraged this behavioral data to
identify users who posted the tweets [52].

(c) “App Behavior & Status” — “Personal Characteristic”:
Zhou et al. first used network usage statistics to analyze
WebMD apps’ behavior. Then, they used this behavioral data
to infer the user’s diseases [52].

(d) “App Behavior & Status” — “Crentials”: Ni et al. used
data from the magnetometer and microphone to capture UI
switch sequences, which were then combined with keystrokes
to deduce the unlock screen passcode [24].

(e) “Keystroke” — “Crentials”: Owusu et al. utilized
keystrokes infered from accelerometer data to successfully
crack 59 out of 99 passwords [25].

(f) “Voice Info”: In the reviewed papers, we did not find
any specific examples of attacks that link “Voice Info” to other
private information. However, intuitively, if a user’s voice is
compromised, all their private information could be leaked if
they mention it while speaking.

IV. MOBILE PUBLIC-TO-PRIVATE ATTACK

In this section, we present the MP2P attack’s definition and
standard workflow and then discuss its methodologies.

A. Definition and Standard Workflow

1) Definition: As we named it “Mobile Public-to-Private,”
this attack naturally has three major characteristics: “mobile

Other
Proc. &
Sys. Info

Sensors

Peripherals,

Personal
Characteristics

Fig. 1. Interactions between Leaked Information.
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system,” “public resources,” and “private information.” There-
fore, the Mobile Public-to-Private (MP2P) attack is an attack
performed on a mobile system, exploiting public resources to
leak private information.

Especially, The “private information” refers to data that, if
exposed, would directly or indirectly harm the end-users. This
information is safeguarded by the mobile system and cannot be
accessed without proper permissions. The “public resources”
consist of two types of data. The first type is data primarily
exploited by attackers, while the second type is auxiliary data
that helps in leaking private information. Both types of data
are publicly available and can be freely obtained within the
mobile system or online.

Private Info
Public
Resources

Fingerprint
Construction

Auxiliary Data

Fig. 2. The standard workflow of MP2P attacks.

2) Workflow: The workflow includes 4 phases (Figure 2):

(a) Collect public resources (usually over a period of time,
step-1). For example, one can collect a trace of accelerometer
readings over 5 minutes.

(b) Construct fingerprints of collected public resources by
training models or using pattern-extracting methods (e.g.,
generate a fingerprint from the collected traces to represent
a user’s routes, step-2). Besides, an attacker may already have
pre-defined patterns.

(c) Use constructed fingerprints as input to uncover private
information by pattern-matching or classifying algorithms
(e.g., match the occurrence of a given trace via the fingerprints
to infer a user’s routes, steps 3 and 4). The auxiliary data
(e.g., maps or timestamps) can be used to supply fundamental
information for the matching process [11] [20] or to improve
the inference accuracy [22].



(d) In some cases, private information can be directly
obtained from public resources (steps 5 and 6). For instance,
Reardon et al. caution that attackers can directly read geolo-
cation from carelessly shared photo files [29].

B. Attack Methodologies

We have compiled several attack methods from our reviewed
papers on attack methodology and detection techniques (see
Figure 3). Generally, most attacks utilize machine or deep
learning approaches (“ML/DL”) due to their ability to effec-
tively fingerprint data. Additionally, some attacks use hybrid
methods, combining ML/DL with heuristics or statistics, statis-
tics with pattern matching, and heuristics with manual checks
(the dotted line in Figure 3). Furthermore, roughly half of the
attacks require auxiliary data, while the other half do not.
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(a) we consider the Dynamic Time Warping (DTW) alone as a “Pattern
Matching” algorithm. However, if the DTW is integrated with a machine or
deep learning process, we think of it as a “ML/DL” approach;

(b) we consider the Hidden Markov Model as a “Statistics” method.

Fig. 3. The summary of methodologies of the MP2P attack.
C. Threat Model

In this section, we generalize the behavior model of attack-
ers and mobile users. Please note that the behaviors associated
with our new attack method are discussed in § V-B.

a) Attackers: In the MP2P attack, attackers aim to infer
mobile users’ private information, such as user identity, spe-
cific activities, and locations. However, instead of obtaining
this information directly, the attackers can only exploit the
public resources that have been published in any form. For
example, an attacker can obtain public resources collected by
mobile platforms (e.g., Android, iOS) or released by online
websites, inferring a user’s routes without directly touching
any private information, such as GPS data.

b) Mobile Users: Mobile users, as victims of the MP2P
attack, will not hide or restrict their public resources from
being accessed and collected. For example, a mobile user will
not turn off the accelerometer sensor or perturb its value by
intentionally shaking the phone. Further, if an attacker uses a
particular service to obtain public resources, the mobile user
will not kill the service to block the data collection.

V. GETTING YOUR FLIGHT INFORMATION

This section illustrates a new MP2P attack method to infer
users’ specific flight information from their public resources.
First, we discuss threats of such flight information. We then
model behaviors of attackers and users. Finally, we detail the
attack process and demonstrate its effectiveness through a real-
world case study.

A. Threats of Flight Information

It is obvious that customers’ flight information is so-
called “personally identifiable information (PII)” [23], whose
exfiltration would expose an individual’s identity or lead to
unexpected incidents: in May 2021, a Korean idol group was
mobbed at an airport by crazy fans who were aware of their
flight schedule and destination [12]; In 2019, another idol had
to “run for his life” away from the fans waiting for him at
an airport [13]. To protect the flight information from being
disclosed, airlines always claim their mobile apps or websites
are equipped with several technical safeguards [3], [34], [41].

However, these safeguards focus on private information
(e.g., booking information) without paying enough attention to
the “harmless” public resources. Hence, we believe attackers
can work around those safeguards by exploiting the public
resources. In the following sections, we present our novel
attack method that only relies on public resources, such as
cell phone’s airplane mode status and gyroscope data, to infer
a customer’s flight information.

B. Modeling Behaviors

In this section, we introduce the behavior models of attack-
ers, malware, and mobile users, respectively.

a) Malware and Attackers: The malware aims to gather
public resources from users’ smartphones. Specifically, we
assume malware has already been installed in the victim’s
smartphone. Moreover, it can only access public resources
from the phone and send it to attackers. The attackers are
looking to find out the victim’s flight information, and they
can only use the public resources collected by the malware or
freely available information online to achieve this.

b) Mobile Users: We assume mobile users never grant
permission to access their private information to the malware.
However, they will not prevent the malware from touching
public resources (e.g., manually shut down the malware or
turn off mobile sensors). Importantly, we assume the user
will comply with the rule on the flight — the user will turn
on the airplane mode before the flight takes off and turn off
the airplane mode after the flight lands. We use this special
user behavior on the flight as the pre-defined behavior pattern.
In addition, the user will not restrict the malware’s network
access, so it can send the collected data to attackers.

C. Our Attack Method

In this section, we first outline our attack. Next, we detail the
attack process and demonstrate how it works with an example.



1) Overview: As shown in Figure 4, our attack com-
prises two phases: “data collection” and “pattern matching
& inference.” The former relies on the pre-installed malware
to continuously collect public resources and send them to
an attacker. The latter requires the attacker to infer flight
information by synthesizing the collected data, our pre-defined
behavior pattern, and other reachable public data.

Please note that in our MP2P attack, the public resources
include airplane mode status and accelerometer/gyroscope
readings; the targeted private information contains passengers’
flight numbers, departure locations, destinations, and routes;
the auxiliary information refers to online flight schedule.
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Fig. 4. Attack Overview.

2) Public Data Collection: In this phase, the pre-installed
malware auto-launches when the smartphone boots. Then, it
starts a background service that continuously collects public
resources, including airplane mode status (on/off) and gyro-
scope/accelerometer readings. Note that most mobile systems
(e.g., Android) allow these resources to be obtained without
any permissions. To prevent the data-collecting process from
being stopped accidentally, we implement a memory-resident
malware service. That is, if the service has been killed, it will
be restarted either by the mobile system or the malware itself.

As soon as the malware obtains a piece of public data,
it converts the data into a vector with a particular form:
[date][type][value].

e date is the instant time the malware obtains this informa-

tion (e.g., 20240421 17:36:10);

e type is the public data type, including airplane mode,
accelerometer, and gyroscope;

e value is the pubic data value based on the fype: when
referring to airplane mode, the value will be “1” for “on”
and “0” for “off.” For the gyroscope/accelerometer, the
value refers to a specific sensor reading.

Finally, the malware periodically sends the information vectors
to the attacker for further inference of the victim’s specific
flight information.

3) Pattern Matching & Inference: After receiving the data
sent by the malware, the attacker infers the flight information
in three steps based on our pre-defined pattern:

a) Matching the user behavior: As discussed in § V-B,
the victim always adheres to airplane rules and performs
specific behaviors: turn on airplane mode before takeoff and
turn off it after landing. Hence, by checking the timestamps of
the airplane mode switch, the attacker infers when the plane is
taking off or landing. However, although one can approximate

a flight’s departure and arrival time via those behaviors, some
other user activities may generate noise that misleads the
inference of flight information. For example, a user may
accidentally switch the airplane mode or intentionally change
it during a meeting or a movie. To overcome this challenge,
we filter the noise out by the following information:

o Time Spans: We observe that the world’s longest and
shortest flights take more than 18 hours and about 2
minutes, respectively [5], [30]. Based on this fact, we
set the valid time intervals for switching airplane modes
from 1 to 1440 minutes (i.e., 24 hours). For example, if
a user accidentally turns on airplane mode and then turns
it off immediately (i.e., the time interval is less than 1
minute), the malware will consider it the noise and filter
it out of the collected dataset.

o Accelerometer Readings: Accelerometer readings can
help predict whether a user is on an airplane. Suppose
the collected data of airplane mode switches fall within
a valid period. However, the accelerometer readings stay
outside an empirical range that can reflect the user being
in an airplane. In that case, the malware will filter that
noise from the dataset.

To sum up, the public data that malware sends to attackers
includes (1) timestamps representing possible airplane depar-
ture/arrival times and (2) sensor readings (i.e., accelerometer
and gyroscope readings) within the valid time spans.

b) Inferring the flight info: After receiving the pub-
lic data from the malware, the attacker starts inferring
the flight information. Specifically, they search online flight
databases [33], [39] and match the received timestamps with
actual flights’ departure/arrival time. However, such times-
tamps only represent approximate periods, which may not
accurately identify a flight and may match multiple flights.

To improve the accuracy, our attack method provides an
“enlarge-then-reduce” algorithm: first enlarge the scope of
timestamps by 5% ~ 20% to obtain more airplane candidates;
then reduce the scope by identifying the flight direction from
gyroscope readings to determine airplanes that match the most.
This “enlarge-then-reduce” process is dynamic, and the above
ratios may need to be adjusted multiple times to achieve a
satisfactory result.

D. Case Study — Real Flight Trips

This section seeks to answer how effectively our attack
works on real flight trips. We first discuss the experiment setup
and then detail the entire attack process and experiment results.

1) Experiment setup: To collect and send public resources
to the attacker, we implemented the malware as an Android
app and installed it on a Moto G2 with Android Lollipop. We
recruited a volunteer to play the victim role and carried the
Moto G2 device with the pre-installed malware. The authors
played the attacker role and worked on a workstation running
Ubuntu 16.04, Intel i7-7500 CPU, and 15.4 GB memory.

To evaluate our attack method in a real-world case, a
volunteer took two flights with the setup device. First, he
departed on UA-3868 from Roanoke-Blacksburg Regional



Airport (ROA) and arrived at Dulles International Airport
(IAD). Then, he flew on UA-915 from IAD to Paris Charles
de Gaulle Airport (CDG).

2) Attack in Action:

a) Make sure the victim is on the plane: As mentioned
in § V-C, the malware periodically sends the collected public
resources to us. Then, as attackers, we start by checking the
timestamps of the airplane mode switch. In our case, the
data shows the user turned on airplane mode on April 27 at
14:35:43 and later turned it off at 15:20:10. The duration is
about 45 minutes. On the same day, the user turned on the
airplane mode again at 17:22:50 and turned it off at 00:41:23
the next day. The duration is about 7 hours and 20 minutes.
Then, we examined the accelerometer readings and found
strong turbulence in the above duration. Hence, we concluded
that the user was very likely on the flight.

b) Finding possible routes: Next, we inferred the
itinerary based on the above timestamps, which indicate the
departure/arrival time. We first enumerated all airports in the
U.S. and crawled their flight departure/arrival time from the
flightarrivals.com website. Then, we discovered eight routes
for the first trip from April 27 at 14:35:43 to 15:20:10.

¢) Determine flights and trips: Since we already have
eight possible routes for the first trip, there is no need to
enlarge them, only to reduce the number. To that end, (i) we
realized that the second trip endured about 7 hours following
the first one, indicating it was very likely an international
flight. Moreover, only IAD provided such international routes
after checking destination airports among the eight routes.
Hence, we found two valid flights: UA-3868 (from ROA to
TIAD) and UA 3885 (from AVP to IAD). (ii) We examined the
gyroscope readings during this period and found the direction
heading northeast then southeast. Fortunately, among all the
eight routes, only flight UA-3868 from ROA to IAD matches
such direction. Combining the results in (i)(ii), we identified
the flight for the first trip as UA-3868 from ROA to IAD.

As we were confident that the second trip’s departure
airport was IAD (Washington D.C., the U.S.), we checked the
international flights, whose departure time was around 17:22
on April 27. Then, we found that only one flight fit the trip
duration, UA-915, from IAD to CDG (Paris, France). So far,
we have finally obtained all the victim’s flight information.

E. Limitations

a) Limits on Behaviors: Our attack method assumes that
users will adhere to the airplane rules. In other words, a user
will switch the airplane mode when they hear cabin crews ask
to turn on the mode or inform them to turn it off safely. On
the one hand, if the user denies following the flight’s rule or
forgets to turn the airplane mode off after landing', then it is
difficult to infer the departure/arrival time.

On the other hand, if a user shuts down their phone instead
of activating airplane mode during a flight, the attacker cannot
access the accelerometer or gyroscope readings. Since our

!t is a rare case since one cannot use the cellular network or make a call
when the airplane mode is on.

method needs those readings to narrow down possible routes,
the inference accuracy will be reduced, even if we can obtain
the phone’s shutdown/boot time without permission.

b) Limits on Timestamps: Our attack method relies on
the timestamps of airplane mode switches to determine flights’
departure/arrival time. However, users may not change the
mode in time, even if they adhere to the airplane rules. For
example, when a user hears cabin crews ask to activate the
airplane mode, they may do it after a few minutes instead
of immediately. To mitigate this limit, our method provides
the “enlarge-then-reduce” algorithm that adjusts the obtained
timestamps back and forth to match a sufficient number of
possible flights.

VI. CONCLUSIONS

In this paper, we have delved into the MP2P attack. First,
by thoroughly studying academic examples over a decade,
we classified public resources that could be exploited to
leak private information. Then, we systematically analyzed
the typical workflow and attack methodologies of the attack.
Further, we presented a novel attack method to infer users’
private information in a specific scenario—taking flight. Our
real-world experiment proved the method’s effectiveness.
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